Complete the solution of the equation. Find the value of [tex] y [/tex] when [tex] x = 6 [/tex].

[tex] 4x + y = 20 [/tex]



Answer :

Certainly! Let's solve the equation [tex]\(4x + y = 20\)[/tex] step by step to find the value of [tex]\(y\)[/tex] when [tex]\(x\)[/tex] equals 6.

1. Start with the given equation:
[tex]\[ 4x + y = 20 \][/tex]

2. Substitute the given value of [tex]\(x\)[/tex], which is 6, into the equation:
[tex]\[ 4(6) + y = 20 \][/tex]

3. Calculate the value of [tex]\(4 \times 6\)[/tex]:
[tex]\[ 4 \times 6 = 24 \][/tex]
The equation now is:
[tex]\[ 24 + y = 20 \][/tex]

4. To isolate [tex]\(y\)[/tex], subtract 24 from both sides of the equation:
[tex]\[ y = 20 - 24 \][/tex]

5. Perform the subtraction on the right side of the equation:
[tex]\[ 20 - 24 = -4 \][/tex]

So, the value of [tex]\(y\)[/tex] when [tex]\(x\)[/tex] equals 6 is:
[tex]\[ y = -4 \][/tex]