Complete the solution of the equation. Find the value of [tex] y [/tex] when [tex] x = -8 [/tex].

[tex]
8x + 8y = -48
[/tex]



Answer :

Sure, let's solve the equation step-by-step to find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] equals -8.

Given the equation:

[tex]\[ 8x + 8y = -48 \][/tex]

1. Substitute [tex]\( x = -8 \)[/tex] into the equation:

[tex]\[ 8(-8) + 8y = -48 \][/tex]

2. Simplify the equation by calculating [tex]\( 8(-8) \)[/tex]:

[tex]\[ -64 + 8y = -48 \][/tex]

3. To isolate the term with [tex]\( y \)[/tex], add 64 to both sides of the equation:

[tex]\[ -64 + 64 + 8y = -48 + 64 \][/tex]

This simplifies to:

[tex]\[ 8y = 16 \][/tex]

4. Finally, solve for [tex]\( y \)[/tex] by dividing both sides of the equation by 8:

[tex]\[ y = \frac{16}{8} \][/tex]

This yields:

[tex]\[ y = 2 \][/tex]

So, the value of [tex]\( y \)[/tex] when [tex]\( x = -8 \)[/tex] is:

[tex]\[ y = 2 \][/tex]