To find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] equals 15 in the equation
[tex]\[
-x + 2y = -1
\][/tex]
we can follow these steps:
1. Start with the given equation:
[tex]\[
-x + 2y = -1
\][/tex]
2. Substitute [tex]\( x = 15 \)[/tex] into the equation. This changes the equation to:
[tex]\[
-15 + 2y = -1
\][/tex]
3. To isolate [tex]\( 2y \)[/tex], add 15 to both sides of the equation:
[tex]\[
-15 + 2y + 15 = -1 + 15
\][/tex]
Simplifying this, we get:
[tex]\[
2y = 14
\][/tex]
4. Finally, solve for [tex]\( y \)[/tex] by dividing both sides of the equation by 2:
[tex]\[
y = \frac{14}{2}
\][/tex]
Simplifying the fraction, we get:
[tex]\[
y = 7
\][/tex]
Therefore, the value of [tex]\( y \)[/tex] when [tex]\( x = 15 \)[/tex] is [tex]\( 7 \)[/tex].