Complete the solution of the equation. Find the value of [tex]\( y \)[/tex] when [tex]\( x = 15 \)[/tex].

[tex]\[ -x + 2y = -1 \][/tex]

Enter the correct answer.



Answer :

To find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] equals 15 in the equation

[tex]\[ -x + 2y = -1 \][/tex]

we can follow these steps:

1. Start with the given equation:

[tex]\[ -x + 2y = -1 \][/tex]

2. Substitute [tex]\( x = 15 \)[/tex] into the equation. This changes the equation to:

[tex]\[ -15 + 2y = -1 \][/tex]

3. To isolate [tex]\( 2y \)[/tex], add 15 to both sides of the equation:

[tex]\[ -15 + 2y + 15 = -1 + 15 \][/tex]

Simplifying this, we get:

[tex]\[ 2y = 14 \][/tex]

4. Finally, solve for [tex]\( y \)[/tex] by dividing both sides of the equation by 2:

[tex]\[ y = \frac{14}{2} \][/tex]

Simplifying the fraction, we get:

[tex]\[ y = 7 \][/tex]

Therefore, the value of [tex]\( y \)[/tex] when [tex]\( x = 15 \)[/tex] is [tex]\( 7 \)[/tex].