Complete the solution of the equation. Find the value of [tex]$y$[/tex] when [tex]$x = 11$[/tex].

[tex]\[ 8x + 6y = 28 \][/tex]

Enter the correct answer.



Answer :

To find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] equals 11 in the equation [tex]\( 8x + 6y = 28 \)[/tex], follow these steps:

1. Substitute [tex]\( x = 11 \)[/tex] into the equation:
[tex]\[ 8(11) + 6y = 28 \][/tex]

2. Calculate [tex]\( 8 \times 11 \)[/tex]:
[tex]\[ 88 + 6y = 28 \][/tex]

3. Subtract 88 from both sides of the equation to isolate the term with [tex]\( y \)[/tex]:
[tex]\[ 6y = 28 - 88 \][/tex]

4. Simplify the right-hand side:
[tex]\[ 6y = -60 \][/tex]

5. Solve for [tex]\( y \)[/tex] by dividing both sides by 6:
[tex]\[ y = \frac{-60}{6} \][/tex]

6. Perform the division:
[tex]\[ y = -10 \][/tex]

So, the value of [tex]\( y \)[/tex] when [tex]\( x = 11 \)[/tex] is [tex]\( -10 \)[/tex].

Answer:

Step-by-step explanation:

To find the value of

y when

=

11

x=11 in the equation

8

+

6

=

28

8x+6y=28, follow these steps:

Substitute

=

11

x=11 into the equation:

8

(

11

)

+

6

=

28

8(11)+6y=28

Simplify the left-hand side:

88

+

6

=

28

88+6y=28

Subtract 88 from both sides to isolate the term with

y:

6

=

28

88

6y=28−88

Simplify the right-hand side:

6

=

60

6y=−60

Divide both sides by 6 to solve for

y:

=

60

6

y=

6

−60

Simplify the fraction:

=

10

y=−10

Therefore, when

=

11

x=11, the value of

y is

10

−10.