Answer :
To find the value of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] equals 11 in the equation [tex]\( 8x + 6y = 28 \)[/tex], follow these steps:
1. Substitute [tex]\( x = 11 \)[/tex] into the equation:
[tex]\[ 8(11) + 6y = 28 \][/tex]
2. Calculate [tex]\( 8 \times 11 \)[/tex]:
[tex]\[ 88 + 6y = 28 \][/tex]
3. Subtract 88 from both sides of the equation to isolate the term with [tex]\( y \)[/tex]:
[tex]\[ 6y = 28 - 88 \][/tex]
4. Simplify the right-hand side:
[tex]\[ 6y = -60 \][/tex]
5. Solve for [tex]\( y \)[/tex] by dividing both sides by 6:
[tex]\[ y = \frac{-60}{6} \][/tex]
6. Perform the division:
[tex]\[ y = -10 \][/tex]
So, the value of [tex]\( y \)[/tex] when [tex]\( x = 11 \)[/tex] is [tex]\( -10 \)[/tex].
1. Substitute [tex]\( x = 11 \)[/tex] into the equation:
[tex]\[ 8(11) + 6y = 28 \][/tex]
2. Calculate [tex]\( 8 \times 11 \)[/tex]:
[tex]\[ 88 + 6y = 28 \][/tex]
3. Subtract 88 from both sides of the equation to isolate the term with [tex]\( y \)[/tex]:
[tex]\[ 6y = 28 - 88 \][/tex]
4. Simplify the right-hand side:
[tex]\[ 6y = -60 \][/tex]
5. Solve for [tex]\( y \)[/tex] by dividing both sides by 6:
[tex]\[ y = \frac{-60}{6} \][/tex]
6. Perform the division:
[tex]\[ y = -10 \][/tex]
So, the value of [tex]\( y \)[/tex] when [tex]\( x = 11 \)[/tex] is [tex]\( -10 \)[/tex].
Answer:
Step-by-step explanation:
To find the value of
y when
=
11
x=11 in the equation
8
+
6
=
28
8x+6y=28, follow these steps:
Substitute
=
11
x=11 into the equation:
8
(
11
)
+
6
=
28
8(11)+6y=28
Simplify the left-hand side:
88
+
6
=
28
88+6y=28
Subtract 88 from both sides to isolate the term with
y:
6
=
28
−
88
6y=28−88
Simplify the right-hand side:
6
=
−
60
6y=−60
Divide both sides by 6 to solve for
y:
=
−
60
6
y=
6
−60
Simplify the fraction:
=
−
10
y=−10
Therefore, when
=
11
x=11, the value of
y is
−
10
−10.