Which steps should be followed to write an equivalent ratio to find [tex]$2 \%$[/tex] of 6700?

A. Write [tex]$2 \%$[/tex] as the ratio [tex]$\frac{200}{100}$[/tex]. Write the equivalent ratio [tex]$\frac{?}{6700} \cdot(100)(67)=6700$[/tex], so [tex][tex]$(20)(67)=1340$[/tex][/tex].

B. Write [tex]$2 \%$[/tex] as the ratio [tex]$\frac{20}{100}$[/tex]. Write the equivalent ratio [tex]$\frac{6700}{?} \cdot(20)(335)=6700$[/tex], so [tex][tex]$(100)(335)=33,500$[/tex][/tex].

C. Write [tex]$2 \%$[/tex] as the ratio [tex]$\frac{2}{100}$[/tex]. Write the equivalent ratio [tex]$\frac{?}{6700} \cdot(100)(67)=6700$[/tex], so [tex][tex]$(2)(67)=134$[/tex][/tex].

D. Write [tex]$2 \%$[/tex] as the ratio [tex]$\frac{2}{100}$[/tex]. Write the equivalent ratio [tex]$\frac{?}{6700} \cdot(100)(6.7)=6700$[/tex], so [tex][tex]$(20)(6.7)=13.4$[/tex][/tex].



Answer :

To solve for [tex]$2 \%$[/tex] of 6700, we start by converting the percentage to a ratio. We do this by expressing [tex]$2 \%$[/tex] as the ratio [tex]\(\frac{2}{100}\)[/tex].

Next, we use the ratio [tex]\(\frac{2}{100}\)[/tex] to find an equivalent ratio for 6700. We set up the proportion:

[tex]\[ \frac{2}{100} = \frac{x}{6700} \][/tex]

To find [tex]\(x\)[/tex], we cross-multiply and solve for [tex]\(x\)[/tex]:

[tex]\[ 2 \cdot 6700 = 100 \cdot x \][/tex]

This simplifies to:

[tex]\[ 13400 = 100x \][/tex]

Next, we solve for [tex]\(x\)[/tex] by dividing both sides of the equation by 100:

[tex]\[ x = \frac{13400}{100} \][/tex]

This yields:

[tex]\[ x = 134 \][/tex]

Therefore, [tex]\(2 \%\)[/tex] of 6700 is 134. The correct equivalent ratio is found using the steps outlined above. Specifically, the correct intermediate step is:

\[
(2)(67) = 134