Which is equivalent to [tex]$2^4$[/tex]?

A. [tex]$2+2+2+2=8$[/tex]

B. [tex]$2 \cdot 2 \cdot 2 \cdot 2=16$[/tex]

C. [tex][tex]$2 \cdot 4=8$[/tex][/tex]

D. [tex]$4 \cdot 4=16$[/tex]



Answer :

Let's break down the problem step-by-step to determine which expression is equivalent to [tex]\(2^4\)[/tex].

First, understand that [tex]\(2^4\)[/tex] means 2 raised to the power of 4. This is equivalent to multiplying the number 2 by itself four times:

[tex]\[ 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 \][/tex]

Now, we'll compute the result step-by-step:

[tex]\[ 2 \cdot 2 = 4 \][/tex]
[tex]\[ 4 \cdot 2 = 8 \][/tex]
[tex]\[ 8 \cdot 2 = 16 \][/tex]

So, [tex]\(2^4\)[/tex] equals 16.

Now, let's compare this result to the given expressions:

1. [tex]\(2 + 2 + 2 + 2 = 8\)[/tex]
- Adding 2 four times results in 8, which is not equal to 16.

2. [tex]\(2 \cdot 2 \cdot 2 \cdot 2 = 16\)[/tex]
- This multiplication expression exactly matches our computation of [tex]\(2^4\)[/tex].

3. [tex]\(2 \cdot 4 = 8\)[/tex]
- Multiplying 2 by 4 results in 8, which is not equal to 16.

4. [tex]\(4 \cdot 4 = 16\)[/tex]
- While this multiplication results in 16, it is not equivalent to [tex]\(2^4\)[/tex]. The base and the exponent are not the same.

Therefore, the correct and equivalent expression to [tex]\(2^4\)[/tex] is:

[tex]\[ 2 \cdot 2 \cdot 2 \cdot 2 = 16 \][/tex]