4. The mole is a counting number that allows scientists to describe how individual molecules and atoms react. If one mole of atoms or molecules is equal to [tex]$6.022 \times 10^{23}$[/tex] atoms or molecules, how many molecules are in a 23.45 g sample of copper (II) hydroxide, [tex][tex]$Cu(OH)_2$[/tex][/tex]? The molar mass (Mm) of [tex]$Cu(OH)_2$[/tex] is [tex]97.562 \, g/mol[/tex].

Express your answer to the correct number of significant figures and show all work in the form of dimensional analysis as shown in Lesson 4.



Answer :

To determine the number of molecules in a 23.45 g sample of copper(II) hydroxide, [tex]\( Cu(OH)_2 \)[/tex], we need to follow these steps:

1. Convert the mass of the sample to moles:

The molar mass of copper(II) hydroxide ([tex]\( Cu(OH)_2 \)[/tex]) is given as [tex]\( 97.562 \, \text{g/mol} \)[/tex]. This means that 1 mole of [tex]\( Cu(OH)_2 \)[/tex] weighs [tex]\( 97.562 \, \text{g} \)[/tex].

First, calculate the number of moles in a [tex]\( 23.45 \, \text{g} \)[/tex] sample using the relationship:
[tex]\[ \text{Number of moles} = \frac{\text{Mass (g)}}{\text{Molar Mass (g/mol)}} \][/tex]

So,
[tex]\[ \text{Number of moles} = \frac{23.45 \, \text{g}}{97.562 \, \text{g/mol}} \approx 0.2404 \, \text{mol} \][/tex]

2. Convert moles to molecules:

One mole of any substance contains Avogadro's number of molecules, which is [tex]\( 6.022 \times 10^{23} \)[/tex] molecules per mole.

To find the number of molecules in the given number of moles, use the relationship:
[tex]\[ \text{Number of molecules} = \text{Number of moles} \times \text{Avogadro's number} \][/tex]

Thus,
[tex]\[ \text{Number of molecules} = 0.2404 \, \text{mol} \times 6.022 \times 10^{23} \, \text{molecules/mol} \][/tex]

[tex]\[ \text{Number of molecules} \approx 1.447 \times 10^{23} \, \text{molecules} \][/tex]

In conclusion, a 23.45 g sample of [tex]\( Cu(OH)_2 \)[/tex] contains approximately [tex]\( 0.2404 \, \text{moles} \)[/tex] and [tex]\( 1.447 \times 10^{23} \)[/tex] molecules of [tex]\( Cu(OH)_2 \)[/tex]. These results are expressed to the correct number of significant figures based on the given values in the problem.