Which is equivalent to [tex]\sin ^{-1}\left(\cos \left(\frac{\pi}{2}\right)\right)[/tex]? Give your answer in radians.

A. 0
B. [tex]\frac{\pi}{2}[/tex]
C. [tex]\pi[/tex]
D. [tex]2\pi[/tex]



Answer :

To find the equivalent value of [tex]\(\sin^{-1}\left(\cos\left(\frac{\pi}{2}\right)\right)\)[/tex], let's follow these steps carefully:

1. Evaluate the cosine function:
- We need to determine [tex]\(\cos\left(\frac{\pi}{2}\right)\)[/tex].
- The cosine of [tex]\(\frac{\pi}{2}\)[/tex] radians (or 90 degrees) is 0.
[tex]\[ \cos\left(\frac{\pi}{2}\right) = 0 \][/tex]

2. Apply the inverse sine function:
- Now we need to find [tex]\(\sin^{-1}(0)\)[/tex].
- The inverse sine function returns the angle whose sine is the given value. We need to find an angle [tex]\( \theta \)[/tex] such that [tex]\(\sin(\theta) = 0\)[/tex].
- Within the range of the inverse sine function [tex]\([- \frac{\pi}{2}, \frac{\pi}{2}]\)[/tex], the angle that satisfies [tex]\(\sin(\theta) = 0\)[/tex] is [tex]\( \theta = 0 \)[/tex].

3. Conclusion:
- Therefore, [tex]\(\sin^{-1}(0) = 0\)[/tex], and consequently:
[tex]\[ \sin^{-1}\left(\cos\left(\frac{\pi}{2}\right)\right) = \sin^{-1}(0) = 0 \][/tex]

Hence, the equivalent value of [tex]\(\sin^{-1}\left(\cos\left(\frac{\pi}{2}\right)\right)\)[/tex] in radians is [tex]\(0\)[/tex].