Simplify each expression.

[tex]\[ 5.5 \left( x + 6 \frac{1}{2} \right) - \left( x + 9 \frac{1}{3} \right) - (19 - x) \][/tex]



Answer :

Let's simplify the given expression step-by-step:

[tex]\[ 5.5(x + 6 \frac{1}{2}) - \left(x + 9 \frac{1}{3}\right) - (19 - x) \][/tex]

First, we will simplify each term separately.

1. Simplifying [tex]\(5.5(x + 6 \frac{1}{2})\)[/tex]:
- Convert [tex]\(6 \frac{1}{2}\)[/tex] to an improper fraction: [tex]\(6 + 0.5 = 6.5\)[/tex]
- Multiply by 5.5:
[tex]\[ 5.5(x + 6.5) = 5.5x + 5.5 \cdot 6.5 = 5.5x + 35.75 \][/tex]
So, [tex]\(5.5(x + 6 \frac{1}{2}) = 5.5x + 35.75\)[/tex].

2. Simplifying [tex]\(-\left(x + 9 \frac{1}{3}\right)\)[/tex]:
- Convert [tex]\(9 \frac{1}{3}\)[/tex] to an improper fraction: [tex]\(9 + \frac{1}{3} = \frac{27}{3} + \frac{1}{3} = \frac{28}{3}\)[/tex]
- Applying the negative sign inside:
[tex]\[ -\left(x + \frac{28}{3}\right) = -x - \frac{28}{3} \][/tex]

3. Simplifying [tex]\(-(19 - x)\)[/tex]:
- Distribute the negative sign inside:
[tex]\[ -19 + x \][/tex]
- which simplifies to:
[tex]\[ x - 19 \][/tex]

Now, let's combine all three simplified expressions:

[tex]\[ (5.5x + 35.75) + \left(-x - \frac{28}{3}\right) + (x - 19) \][/tex]

Combining like terms:
[tex]\[ 5.5x - x + x + 35.75 - 19 - \frac{28}{3} \][/tex]

First, combine the [tex]\(x\)[/tex] terms:
[tex]\[ 5.5x - x + x = 5.5x \][/tex]

Next, combine the constant terms:
[tex]\[ 35.75 - 19 - \frac{28}{3} \][/tex]

To combine these, convert all constants to a common form. First, let's convert everything to decimals:
[tex]\[ 35.75 - 19 - 9.\overline{3} \][/tex]

Calculate:
[tex]\[ 35.75 - 19 = 16.75 \][/tex]
[tex]\[ 16.75 - 9.\overline{3} = 7.416666\overline{6} \][/tex]

So, the combined expression is:
[tex]\[ 5.5x + 7.416666\overline{6} \][/tex]

Thus, the simplified expression is:
[tex]\[ 5.5x + 7.41666666666666 \][/tex]