Triangle [tex]$XYZ$[/tex] has vertices [tex]$X(-1,-3)$[/tex], [tex][tex]$Y(0,0)$[/tex][/tex], and [tex]$Z(1,-3)$[/tex]. Malik rotated the triangle [tex]$90^{\circ}$[/tex] clockwise about the origin. What is the correct set of image points for triangle [tex]$X^{\prime}Y^{\prime}Z^{\prime}$[/tex]?

A. [tex][tex]$X^{\prime}(3,-1)$[/tex][/tex], [tex]$Y^{\prime}(0,0)$[/tex], [tex]$Z^{\prime}(3,1)$[/tex]
B. [tex][tex]$X^{\prime}(1,3)$[/tex][/tex], [tex]$Y^{\prime}(0,0)$[/tex], [tex]$Z^{\prime}(-1,3)$[/tex]
C. [tex][tex]$X^{\prime}(1,-3)$[/tex][/tex], [tex]$Y^{\prime}(0,0)$[/tex], [tex]$Z^{\prime}(-1,-3)$[/tex]
D. [tex][tex]$X^{\prime}(-3,1)$[/tex][/tex], [tex]$Y^{\prime}(0,0)$[/tex], [tex]$Z^{\prime}(-3,-1)$[/tex]



Answer :

To determine the correct set of image points for triangle [tex]\(X'Y'Z'\)[/tex] after rotating triangle [tex]\(XYZ\)[/tex] [tex]\(90^\circ\)[/tex] clockwise about the origin, let's follow these steps:

Step 1: Understanding the 90° Clockwise Rotation
When a point [tex]\((x, y)\)[/tex] is rotated [tex]\(90^\circ\)[/tex] clockwise around the origin, it is transformed into the point [tex]\((y, -x)\)[/tex].

Step 2: Apply the Rotation to Each Vertex

- Vertex [tex]\(X(-1, -3)\)[/tex]:
[tex]\[ (x, y) = (-1, -3) \implies (y, -x) = (-3, 1) \][/tex]
So, [tex]\(X' = (-3, 1)\)[/tex].

- Vertex [tex]\(Y(0, 0)\)[/tex]:
[tex]\[ (x, y) = (0, 0) \implies (y, -x) = (0, 0) \][/tex]
So, [tex]\(Y' = (0, 0)\)[/tex].

- Vertex [tex]\(Z(1, -3)\)[/tex]:
[tex]\[ (x, y) = (1, -3) \implies (y, -x) = (-3, -1) \][/tex]
So, [tex]\(Z' = (-3, -1)\)[/tex].

Step 3: Collate the Image Points

After the rotation, the image points [tex]\(X', Y', Z'\)[/tex] form the set:
[tex]\[ X'(-3, 1), Y'(0, 0), Z'(-3, -1) \][/tex]

This matches with one of the given options:
[tex]\[ \boxed{X(-3, 1), Y(0, 0), Z(-3, -1)} \][/tex]