Find the value of the linear correlation coefficient [tex]\( r \)[/tex]. The paired data below consist of the temperatures on randomly chosen days and the amount a certain kind of plant grew (in millimeters).

[tex]\[
\begin{array}{c|ccccccccc}
\text{Temperature} & 62 & 76 & 50 & 51 & 71 & 46 & 51 & 44 & 79 \\
\hline
\text{Growth} & 36 & 39 & 50 & 13 & 33 & 33 & 17 & 6 & 16 \\
\end{array}
\][/tex]

A. [tex]\( 0.256 \)[/tex]

B. [tex]\( 0 \)[/tex]

C. [tex]\( -0.210 \)[/tex]

D. [tex]\( 0.196 \)[/tex]



Answer :

To find the value of the linear correlation coefficient [tex]\( r \)[/tex] between the temperatures and the growth of the plant, follow these steps:

1. List the paired data:

[tex]\[ \begin{array}{c|c} \text{Temperature (x)} & \text{Growth (y)} \\ \hline 62 & 36 \\ 76 & 39 \\ 50 & 50 \\ 51 & 13 \\ 71 & 33 \\ 46 & 33 \\ 51 & 17 \\ 44 & 6 \\ 79 & 16 \\ \end{array} \][/tex]

2. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:

[tex]\[ \bar{x} = \frac{62 + 76 + 50 + 51 + 71 + 46 + 51 + 44 + 79}{9} = \frac{530}{9} \approx 58.89 \][/tex]

[tex]\[ \bar{y} = \frac{36 + 39 + 50 + 13 + 33 + 33 + 17 + 6 + 16}{9} = \frac{243}{9} = 27 \][/tex]

3. Calculate the variance and covariance terms:

[tex]\[ S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 \][/tex]

[tex]\[ S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 \][/tex]

[tex]\[ S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \][/tex]

4. Apply these to find the values:

Given the complexity of manual calculations, trust that [tex]\( S_{xx} \)[/tex], [tex]\( S_{yy} \)[/tex], and [tex]\( S_{xy} \)[/tex] have been calculated accurately.

5. Use the formula for the correlation coefficient [tex]\( r \)[/tex]:

[tex]\[ r = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}} \][/tex]

After accurate calculations, we find that the correlation coefficient [tex]\( r \)[/tex] is approximately [tex]\( 0.196 \)[/tex].

6. Compare the result to the given choices:

A. 0.256
B. 0
C. -0.210
D. 0.196

The value closest to our calculated correlation coefficient [tex]\( r \)[/tex] is [tex]\( 0.196 \)[/tex], which corresponds to option D.

Therefore, the value of the linear correlation coefficient [tex]\( r \)[/tex] is:

[tex]\[ \boxed{0.196} \][/tex]