Answer :
Let's efficiently tackle the expression given: [tex]\( 12.225 \div 47 - 7.525 \div 47 + 1.9 \)[/tex].
### Step-by-Step Solution:
1. Divide 12.225 by 47:
[tex]\[ \frac{12.225}{47} \][/tex]
When you perform this division, you get approximately:
[tex]\[ 12.225 \div 47 \approx 0.2601063829787234 \][/tex]
2. Divide 7.525 by 47:
[tex]\[ \frac{7.525}{47} \][/tex]
When you perform this division, you get approximately:
[tex]\[ 7.525 \div 47 \approx 0.1601063829787234 \][/tex]
3. Subtract the quotient of the second division from the quotient of the first division:
[tex]\[ 0.2601063829787234 - 0.1601063829787234 \][/tex]
Performing this subtraction yields:
[tex]\[ 0.2601063829787234 - 0.1601063829787234 = 0.1 \][/tex]
4. Add 1.9 to the result of the subtraction:
[tex]\[ 0.1 + 1.9 \][/tex]
Adding these gives:
[tex]\[ 0.1 + 1.9 = 2.0 \][/tex]
### Final Answer:
By following these steps, we find that the result is:
[tex]\[ 12.225 \div 47 - 7.525 \div 47 + 1.9 = 2.0 \][/tex]
So, the final result of your calculation is [tex]\( 2.0 \)[/tex].
### Step-by-Step Solution:
1. Divide 12.225 by 47:
[tex]\[ \frac{12.225}{47} \][/tex]
When you perform this division, you get approximately:
[tex]\[ 12.225 \div 47 \approx 0.2601063829787234 \][/tex]
2. Divide 7.525 by 47:
[tex]\[ \frac{7.525}{47} \][/tex]
When you perform this division, you get approximately:
[tex]\[ 7.525 \div 47 \approx 0.1601063829787234 \][/tex]
3. Subtract the quotient of the second division from the quotient of the first division:
[tex]\[ 0.2601063829787234 - 0.1601063829787234 \][/tex]
Performing this subtraction yields:
[tex]\[ 0.2601063829787234 - 0.1601063829787234 = 0.1 \][/tex]
4. Add 1.9 to the result of the subtraction:
[tex]\[ 0.1 + 1.9 \][/tex]
Adding these gives:
[tex]\[ 0.1 + 1.9 = 2.0 \][/tex]
### Final Answer:
By following these steps, we find that the result is:
[tex]\[ 12.225 \div 47 - 7.525 \div 47 + 1.9 = 2.0 \][/tex]
So, the final result of your calculation is [tex]\( 2.0 \)[/tex].