To find the volume of a solid right pyramid with a square base and height, we start with the formula for the volume of a pyramid:
[tex]\[
V = \frac{1}{3} \times \text{base area} \times \text{height}
\][/tex]
In this problem, the base of the pyramid is a square with side length [tex]\( x \)[/tex] cm. The area of a square is given by:
[tex]\[
\text{base area} = x^2
\][/tex]
The height of the pyramid is [tex]\( y \)[/tex] cm. Plugging the base area and height into the volume formula gives:
[tex]\[
V = \frac{1}{3} \times x^2 \times y
\][/tex]
Therefore, the expression representing the volume of the pyramid is:
[tex]\[
\frac{1}{3} x^2 y \, \text{cm}^3
\][/tex]
Thus, the correct answer is:
[tex]\[
\boxed{\frac{1}{3} x^2 y \, \text{cm}^3}
\][/tex]