A solid right pyramid has a square base with an edge length of [tex]$x$[/tex] cm and a height of [tex]$y$[/tex] cm.

Which expression represents the volume of the pyramid?

A. [tex]\frac{1}{3} x y[/tex] cm³
B. [tex]\frac{1}{3} x^2 y[/tex] cm³
C. [tex]\frac{1}{2} x y^2[/tex] cm³
D. [tex]\frac{1}{2} x^2 y[/tex] cm³



Answer :

To find the volume of a solid right pyramid with a square base and height, we start with the formula for the volume of a pyramid:

[tex]\[ V = \frac{1}{3} \times \text{base area} \times \text{height} \][/tex]

In this problem, the base of the pyramid is a square with side length [tex]\( x \)[/tex] cm. The area of a square is given by:

[tex]\[ \text{base area} = x^2 \][/tex]

The height of the pyramid is [tex]\( y \)[/tex] cm. Plugging the base area and height into the volume formula gives:

[tex]\[ V = \frac{1}{3} \times x^2 \times y \][/tex]

Therefore, the expression representing the volume of the pyramid is:

[tex]\[ \frac{1}{3} x^2 y \, \text{cm}^3 \][/tex]

Thus, the correct answer is:

[tex]\[ \boxed{\frac{1}{3} x^2 y \, \text{cm}^3} \][/tex]