Certainly! To find the value of [tex]\( a_{10} \)[/tex] in the sequence defined by the formula [tex]\( a_n = 3n - 5 \)[/tex], follow these steps:
1. Identify the formula and the term to find: We are given the sequence formula [tex]\( a_n = 3n - 5 \)[/tex]. We need to find the value of the term when [tex]\( n = 10 \)[/tex].
2. Substitute [tex]\( n = 10 \)[/tex] into the formula: Replace the variable [tex]\( n \)[/tex] with 10 in the given formula.
[tex]\[
a_{10} = 3(10) - 5
\][/tex]
3. Perform the multiplication: Multiply 3 by 10.
[tex]\[
3 \times 10 = 30
\][/tex]
4. Perform the subtraction: Subtract 5 from 30.
[tex]\[
30 - 5 = 25
\][/tex]
5. Conclude the value: Therefore, the value of [tex]\( a_{10} \)[/tex] is 25.
So, the value of [tex]\( a_{10} \)[/tex] in the sequence [tex]\( a_n = 3n - 5 \)[/tex] is:
[tex]\[
\boxed{25}
\][/tex]