Given the equations [tex]\sqrt[3]{y^2}=\sqrt[6]{x}[/tex] and [tex]y=\sqrt[n]{x}[/tex], find the value of [tex]n[/tex].



Answer :

To find the value of [tex]\( n \)[/tex] given the equations [tex]\(\sqrt[3]{y^2} = \sqrt[6]{x}\)[/tex] and [tex]\( y = \sqrt[n]{x} \)[/tex], we will solve the system step-by-step.

### Step 1: Rewrite the first equation

The first equation is:
[tex]\[ \sqrt[3]{y^2} = \sqrt[6]{x} \][/tex]

This can be rewritten using exponents:
[tex]\[ (y^2)^{1/3} = x^{1/6} \][/tex]

Simplify the left side:
[tex]\[ y^{2/3} = x^{1/6} \][/tex]

### Step 2: Rewrite the second equation

The second equation is:
[tex]\[ y = \sqrt[n]{x} \][/tex]

This can also be rewritten using exponents:
[tex]\[ y = x^{1/n} \][/tex]

### Step 3: Substitute [tex]\( y \)[/tex] in the first equation

Substitute [tex]\( y = x^{1/n} \)[/tex] into the first equation [tex]\( y^{2/3} = x^{1/6} \)[/tex]:
[tex]\[ (x^{1/n})^{2/3} = x^{1/6} \][/tex]

Simplify the left side by multiplying the exponents:
[tex]\[ x^{(1/n) \cdot (2/3)} = x^{1/6} \][/tex]

This results in:
[tex]\[ x^{2/(3n)} = x^{1/6} \][/tex]

### Step 4: Equate the exponents

Since the bases are the same, the exponents must be equal:
[tex]\[ \frac{2}{3n} = \frac{1}{6} \][/tex]

### Step 5: Solve for [tex]\( n \)[/tex]

To solve for [tex]\( n \)[/tex], cross-multiply:
[tex]\[ 2 \cdot 6 = 1 \cdot 3n \][/tex]

Simplify:
[tex]\[ 12 = 3n \][/tex]

Divide both sides by 3:
[tex]\[ n = \frac{12}{3} \][/tex]

[tex]\[ n = 4 \][/tex]

### Conclusion

The value of [tex]\( n \)[/tex] is:
[tex]\[ \boxed{4} \][/tex]