Question 7 (Multiple Choice Worth 1 point)

Simplify [tex]3 \sqrt{5} - 2 \sqrt{7} + \sqrt{45} - \sqrt{28}[/tex].



Answer :

To simplify the expression [tex]\(3 \sqrt{5} - 2 \sqrt{7} + \sqrt{45} - \sqrt{28}\)[/tex], follow these steps:

1. Simplify [tex]\(\sqrt{45}\)[/tex]:
[tex]\[ \sqrt{45} = \sqrt{9 \cdot 5} = \sqrt{9} \cdot \sqrt{5} = 3 \sqrt{5} \][/tex]

2. Simplify [tex]\(\sqrt{28}\)[/tex]:
[tex]\[ \sqrt{28} = \sqrt{4 \cdot 7} = \sqrt{4} \cdot \sqrt{7} = 2 \sqrt{7} \][/tex]

3. Substitute the simplified radicals back into the original expression:
[tex]\[ 3 \sqrt{5} - 2 \sqrt{7} + 3 \sqrt{5} - 2 \sqrt{7} \][/tex]

4. Combine like terms:
[tex]\[ (3 \sqrt{5} + 3 \sqrt{5}) + (-2 \sqrt{7} - 2 \sqrt{7}) \][/tex]

Combine the terms with [tex]\(\sqrt{5}\)[/tex]:
[tex]\[ 3 \sqrt{5} + 3 \sqrt{5} = 6 \sqrt{5} \][/tex]

Combine the terms with [tex]\(\sqrt{7}\)[/tex]:
[tex]\[ -2 \sqrt{7} - 2 \sqrt{7} = -4 \sqrt{7} \][/tex]

5. Write the combined simplified terms together:
[tex]\[ 6 \sqrt{5} - 4 \sqrt{7} \][/tex]

Therefore, the simplified form of the expression [tex]\(3 \sqrt{5} - 2 \sqrt{7} + \sqrt{45} - \sqrt{28}\)[/tex] is:

[tex]\[ 6 \sqrt{5} - 4 \sqrt{7} \][/tex]