[tex]$(1+\sqrt{3})^2$[/tex] can be written in the form [tex]$a + b \sqrt{3}$[/tex], where [tex]$a$[/tex] and [tex]$b$[/tex] are integers.

Work out the value of [tex]$a$[/tex] and the value of [tex]$b$[/tex].



Answer :

To solve the expression [tex]\((1 + \sqrt{3})^2\)[/tex] and express it in the form [tex]\(a + b\sqrt{3}\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are integers, we follow these steps:

1. Expand the Expression:
Given expression: [tex]\((1 + \sqrt{3})^2\)[/tex]

To expand the expression, we use the formula [tex]\((a + b)^2 = a^2 + 2ab + b^2\)[/tex].

Here, [tex]\(a = 1\)[/tex] and [tex]\(b = \sqrt{3}\)[/tex].

2. Calculate Each Component:
- [tex]\(a^2\)[/tex]:
[tex]\[ 1^2 = 1 \][/tex]

- [tex]\(2ab\)[/tex]:
[tex]\[ 2 \cdot 1 \cdot \sqrt{3} = 2\sqrt{3} \][/tex]

- [tex]\(b^2\)[/tex]:
[tex]\[ (\sqrt{3})^2 = 3 \][/tex]

3. Combine the Results:
Add the computed values:
[tex]\[ a^2 + 2ab + b^2 = 1 + 2\sqrt{3} + 3 \][/tex]
Grouping the rational and irrational parts:
[tex]\[ (1 + 3) + 2\sqrt{3} = 4 + 2\sqrt{3} \][/tex]

4. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
From the combined result, we can see that:
[tex]\(a = 4\)[/tex] (the coefficient of the rational part)
[tex]\(b = 2\)[/tex] (the coefficient of [tex]\(\sqrt{3}\)[/tex])

Therefore, the values are:
[tex]\[ a = 4 \][/tex]
[tex]\[ b = 2 \][/tex]