On his first day of school, Kareem found the high temperature in degrees Fahrenheit to be [tex]$76.1^{\circ}$. He plans to use the function [tex][tex]$C(F)=\frac{5}{9}(F-32)$[/tex] to convert this temperature from degrees Fahrenheit to degrees Celsius. What does [tex]$C(76.1)$ represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit.
C. The amount of time it takes a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius.
D. The amount of time it takes a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit.



Answer :

We start by identifying the function Kareem plans to use for the conversion:

[tex]\[ C(F) = \frac{5}{9} (F - 32) \][/tex]

In this function, [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit, and [tex]\( C(F) \)[/tex] represents the temperature in degrees Celsius.

To find the Celsius temperature corresponding to [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit, we need to compute:

[tex]\[ C(76.1) = \frac{5}{9} (76.1 - 32) \][/tex]

First, we subtract 32 from 76.1:

[tex]\[ 76.1 - 32 = 44.1 \][/tex]

Next, we multiply 44.1 by [tex]\(\frac{5}{9}\)[/tex]:

[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]

[tex]\[ C(76.1) = 24.499999999999996 \][/tex]

Therefore, [tex]\( C(76.1) \)[/tex] represents the temperature of [tex]\( 76.1^{\circ} \)[/tex] Fahrenheit converted to degrees Celsius.

Thus, the correct answer is:

- The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius