Select the correct answer.

Find the quotient:
[tex]\[ \frac{2x-3}{x} \div \frac{7}{x^2} \][/tex]

A. [tex]\(\frac{7}{x(2x-3)}\)[/tex]

B. [tex]\(\frac{7x}{2x-3}\)[/tex]

C. [tex]\(\frac{2x-3}{7x}\)[/tex]

D. [tex]\(\frac{x(2x-3)}{7}\)[/tex]



Answer :

To solve the problem, we need to find the quotient of two fractions involving [tex]\( x \)[/tex]:
[tex]\[ \frac{2x-3}{x} \div \frac{7}{x^2} \][/tex]

The division of fractions can be handled by multiplying by the reciprocal of the second fraction. In other words, we have:

[tex]\[ \frac{2x-3}{x} \div \frac{7}{x^2} = \frac{2x-3}{x} \times \frac{x^2}{7} \][/tex]

Let's perform this multiplication step-by-step:

1. Numerator Multiplication:
[tex]\[ (2x - 3) \times x^2 = (2x-3)x^2 = 2x^3 - 3x^2 \][/tex]

2. Denominator Multiplication:
[tex]\[ x \times 7 = 7x \][/tex]

3. Putting it Together:
[tex]\[ \frac{(2x-3)x^2}{7x} = \frac{2x^3 - 3x^2}{7x} \][/tex]

4. Simplifying the Fraction:
To simplify [tex]\(\frac{2x^3 - 3x^2}{7x}\)[/tex], divide each term in the numerator by [tex]\( x \)[/tex]:
[tex]\[ \frac{2x^3 - 3x^2}{7x} = \frac{2x^2(2x-3)}{7x(2x-3)} \][/tex]

Simplifying further by canceling common terms:
- The numerator [tex]\( 2x^3 - 3x^2 \)[/tex] can be written as [tex]\( x(2x^2 - 3) \)[/tex].
- The denominator remains [tex]\( 7x \)[/tex].

Finally, observe that the [tex]\( x \)[/tex] in the numerator and denominator cancels each other out, leaving:
[tex]\[ = \frac{x(2x-3)}{7} \][/tex]

Thus, the resulting simplified quotient is:
[tex]\[ \frac{x(2x-3)}{7} \][/tex]

So, the correct answer is:
[tex]\[ \boxed{D. \frac{x(2x-3)}{7}} \][/tex]