Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Match the rational numbers with their equivalent forms.

[tex]\[0 . \overline{142857} \quad \longrightarrow \quad \frac{1}{7}\][/tex]

[tex]\[0 . \overline{6} \quad \longrightarrow \quad \frac{2}{3}\][/tex]

[tex]\[0.05 \quad \longrightarrow \quad \frac{1}{20}\][/tex]

[tex]\[0.5 \quad \longrightarrow \quad \frac{1}{2}\][/tex]



Answer :

Sure, let's match each rational number with its equivalent form.

1. [tex]\(0 . \overline{142857}\)[/tex] can be written as [tex]\(\frac{1}{7}\)[/tex].

2. [tex]\(\frac{1}{18}\)[/tex] is approximately equal to [tex]\(0.0555555...\)[/tex].

3. [tex]\(0.5\)[/tex] can be written as [tex]\(\frac{1}{2}\)[/tex].

4. [tex]\(0.05\)[/tex] can be written as [tex]\(\frac{1}{20}\)[/tex].

5. [tex]\(\frac{2}{3}\)[/tex] is approximately equal to [tex]\(0 . \overline{6}\)[/tex].

6. [tex]\(0.6\)[/tex] can be written as [tex]\(\frac{3}{5}\)[/tex].

So, pairing the rational numbers with their equivalent forms:

- [tex]\(0 . \overline{142857}\)[/tex] → [tex]\(\frac{1}{7}\)[/tex]
- [tex]\(\frac{1}{18}\)[/tex] → [tex]\(0.0555555...\)[/tex]
- [tex]\(0.5\)[/tex] → [tex]\(\frac{1}{2}\)[/tex]
- [tex]\(0.05\)[/tex] → [tex]\(\frac{1}{20}\)[/tex]
- [tex]\(\frac{2}{3}\)[/tex] → [tex]\(0 . \overline{6}\)[/tex]
- [tex]\(0.6\)[/tex] → [tex]\(\frac{3}{5}\)[/tex]