Simplify the expression: [tex](x+9)(x-9)[/tex]

A. [tex]2x^2 - 81[/tex]
B. [tex]x^2 - 18[/tex]
C. [tex]2x - 18[/tex]
D. [tex]x^2 - 81[/tex]



Answer :

To simplify the expression [tex]\((x+9)(x-9)\)[/tex], we can use the difference of squares formula. The difference of squares formula states that:

[tex]\[ (a+b)(a-b) = a^2 - b^2 \][/tex]

Here, [tex]\(a = x\)[/tex] and [tex]\(b = 9\)[/tex]. Applying the formula, we get:

[tex]\[ (x+9)(x-9) = x^2 - 9^2 \][/tex]

Now, calculate [tex]\(9^2\)[/tex]:

[tex]\[ 9^2 = 81 \][/tex]

So, the expression simplifies to:

[tex]\[ x^2 - 81 \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{d. \ x^2-81} \][/tex]
The answer is B
X squared-18