Find the first three terms of the sequence defined below, where [tex] n [/tex] represents the position of a term in the sequence. Start with [tex] n = 1 [/tex].

[tex]\[ f(n) = -2n + 7 \][/tex]

[tex]\[
\begin{aligned}
&\text{Term 1: } f(1) = \square \\
&\text{Term 2: } f(2) = \square \\
&\text{Term 3: } f(3) = \square
\end{aligned}
\][/tex]



Answer :

To find the first three terms of the sequence defined by [tex]\( f(n) = -2n + 7 \)[/tex], we'll follow these steps for [tex]\( n = 1, 2, \)[/tex] and [tex]\( 3 \)[/tex]:

1. Determine the first term ([tex]\( f(1) \)[/tex]):
- Substitute [tex]\( n = 1 \)[/tex] into the function:
[tex]\[ f(1) = -2(1) + 7 \][/tex]
- Perform the multiplication:
[tex]\[ f(1) = -2 \cdot 1 + 7 = -2 + 7 \][/tex]
- Add the results:
[tex]\[ f(1) = 5 \][/tex]


2. Determine the second term ([tex]\( f(2) \)[/tex]):
- Substitute [tex]\( n = 2 \)[/tex] into the function:
[tex]\[ f(2) = -2(2) + 7 \][/tex]
- Perform the multiplication:
[tex]\[ f(2) = -2 \cdot 2 + 7 = -4 + 7 \][/tex]
- Add the results:
[tex]\[ f(2) = 3 \][/tex]


3. Determine the third term ([tex]\( f(3) \)[/tex]):
- Substitute [tex]\( n = 3 \)[/tex] into the function:
[tex]\[ f(3) = -2(3) + 7 \][/tex]
- Perform the multiplication:
[tex]\[ f(3) = -2 \cdot 3 + 7 = -6 + 7 \][/tex]
- Add the results:
[tex]\[ f(3) = 1 \][/tex]

Thus, the first three terms of the sequence are:
[tex]\[ 5, 3, 1 \][/tex]