Find the first three terms of the sequence defined below, where [tex]\( n \)[/tex] represents the position of a term in the sequence. Start with [tex]\( n = 1 \)[/tex].

[tex]\[ f(n) = -2n + 3 \][/tex]

[tex]\[ \square \][/tex]
[tex]\[ \square \][/tex]
[tex]\[ \square \][/tex]



Answer :

To find the first three terms of the sequence defined by the function [tex]\( f(n) = -2n + 3 \)[/tex], we start by evaluating the function for the first three values of [tex]\( n \)[/tex].

### Step 1: Calculate the First Term ([tex]\( n = 1 \)[/tex])

For [tex]\( n = 1 \)[/tex]:
[tex]\[ f(1) = -2(1) + 3 \][/tex]

Perform the multiplication:
[tex]\[ -2 \cdot 1 = -2 \][/tex]

Then add 3 to -2:
[tex]\[ f(1) = -2 + 3 = 1 \][/tex]

So, the first term is [tex]\( 1 \)[/tex].

### Step 2: Calculate the Second Term ([tex]\( n = 2 \)[/tex])

For [tex]\( n = 2 \)[/tex]:
[tex]\[ f(2) = -2(2) + 3 \][/tex]

Perform the multiplication:
[tex]\[ -2 \cdot 2 = -4 \][/tex]

Then add 3 to -4:
[tex]\[ f(2) = -4 + 3 = -1 \][/tex]

So, the second term is [tex]\( -1 \)[/tex].

### Step 3: Calculate the Third Term ([tex]\( n = 3 \)[/tex])

For [tex]\( n = 3 \)[/tex]:
[tex]\[ f(3) = -2(3) + 3 \][/tex]

Perform the multiplication:
[tex]\[ -2 \cdot 3 = -6 \][/tex]

Then add 3 to -6:
[tex]\[ f(3) = -6 + 3 = -3 \][/tex]

So, the third term is [tex]\( -3 \)[/tex].

### Final Answer

The first three terms of the sequence are:
[tex]\[ 1, -1, -3 \][/tex]

Thus, the first three terms of the sequence defined by [tex]\( f(n) = -2n + 3 \)[/tex] are [tex]\( 1 \)[/tex], [tex]\( -1 \)[/tex], and [tex]\( -3 \)[/tex].