A pyramid has a square base with sides of length [tex]$s$[/tex]. The height of the pyramid is equal to [tex]$\frac{1}{2}$[/tex] of the length of a side on the base. Which formula represents the volume of the pyramid?

A. [tex]$V=\frac{1}{12} s^3$[/tex]
B. [tex][tex]$V=\frac{1}{6} s^3$[/tex][/tex]
C. [tex]$V=\frac{1}{3} s^3$[/tex]
D. [tex]$V=3 s^3$[/tex]
E. [tex][tex]$V=6 s^3$[/tex][/tex]



Answer :

To determine the correct formula for the volume of a pyramid with a square base and a height equal to half the length of the side, we can follow these steps:

1. Identify the parameters:
- Let [tex]\( s \)[/tex] be the side length of the square base.
- The height of the pyramid is given as [tex]\( \frac{1}{2} \)[/tex] of the side length, so height [tex]\( h = \frac{s}{2} \)[/tex].

2. Recall the formula for the volume of a pyramid:
[tex]\[ V = \frac{1}{3} \times (\text{Base Area}) \times (\text{Height}) \][/tex]

3. Calculate the base area:
- The base is a square with side length [tex]\( s \)[/tex], so the area of the base [tex]\( B \)[/tex] is:
[tex]\[ B = s^2 \][/tex]

4. Substitute the base area and height into the volume formula:
[tex]\[ V = \frac{1}{3} \times s^2 \times \frac{s}{2} \][/tex]

5. Simplify the expression:
[tex]\[ V = \frac{1}{3} \times s^2 \times \frac{s}{2} = \frac{1}{3} \times \frac{1}{2} \times s^3 = \frac{1}{6} s^3 \][/tex]

Therefore, the correct formula for the volume of the pyramid is:
[tex]\[ V = \frac{1}{6} s^3 \][/tex]

Thus, the correct answer is [tex]\( \boxed{B} \)[/tex].