Evaluate the following expression:

[tex]\[ = \frac{5^2 \cdot 2^n + 2^{n+1} - 3^2 \cdot 2^n}{3^{m+3} - 2^2 \cdot 3^{m+1}} \][/tex]



Answer :

Let's work out the given expression step-by-step.

Given:
[tex]\[ \frac{5^2 \cdot 2^n + 2^{n+1} - 3^2 \cdot 2^n}{3^{m+3} - 2^2 \cdot 3^{m+1}} \][/tex]

### Numerator Calculation:

1. Compute [tex]\(5^2\)[/tex]:
[tex]\[ 5^2 = 25 \][/tex]

2. Compute [tex]\(3^2\)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]

3. The numerator [tex]\(25 \cdot 2^n + 2^{n+1} - 9 \cdot 2^n\)[/tex]:

- Combine like terms: [tex]\(25 \cdot 2^n - 9 \cdot 2^n\)[/tex]:
[tex]\[ (25 - 9) \cdot 2^n = 16 \cdot 2^n \][/tex]

- Add the remaining term [tex]\(2^{n+1}\)[/tex]:
[tex]\[ 16 \cdot 2^n + 2^{n+1} \][/tex]

4. Observe that [tex]\(2^{n+1} = 2 \cdot 2^n\)[/tex], so rewrite the numerator:
[tex]\[ 16 \cdot 2^n + 2 \cdot 2^n = (16 + 2) \cdot 2^n = 18 \cdot 2^n \][/tex]

### Denominator Calculation:

1. Work on the term [tex]\(3^{m+3}\)[/tex]:

By the properties of exponents:
[tex]\[ 3^{m+3} = 3^m \cdot 3^3 = 3^m \cdot 27 \][/tex]

2. Work on the term [tex]\(2^2 \cdot 3^{m+1}\)[/tex]:

First, calculate [tex]\(2^2\)[/tex]:
[tex]\[ 2^2 = 4 \][/tex]

Now rewrite the term using exponent rules:
[tex]\[ 4 \cdot 3^{m+1} = 4 \cdot 3^m \cdot 3 = 12 \cdot 3^m \][/tex]

3. The denominator becomes:
[tex]\[ 3^m \cdot 27 - 12 \cdot 3^m \][/tex]

4. Factor out [tex]\(3^m\)[/tex]:
[tex]\[ 3^m (27 - 12) = 3^m \cdot 15 \][/tex]

### Final Expression:

Putting both the numerator and the denominator together, we get:
[tex]\[ \frac{18 \cdot 2^n}{15 \cdot 3^m} \][/tex]

### Simplification:

Simplify the coefficient:
[tex]\[ \frac{18}{15} \cdot \frac{2^n}{3^m} = \frac{6}{5} \cdot \frac{2^n}{3^m} \][/tex]

Thus, the simplified form of the given expression is:
[tex]\[ \frac{6 \cdot 2^n}{5 \cdot 3^m} \][/tex]

This is the final result obtained by simplifying the given mathematical expression.