Drag the tiles to the correct boxes to complete the pairs.

Given that [tex]x = 3 + 8i[/tex] and [tex]y = 7 - i[/tex], match the equivalent expressions.

[tex]-29 - 53i \quad -8 - 41i \quad -15 + 19i \quad 58 + 106i[/tex]

[tex]x \cdot 2y \longrightarrow \square[/tex]
[tex]-5x + y \longrightarrow \square[/tex]



Answer :

To solve these expressions given [tex]\( x = 3 + 8i \)[/tex] and [tex]\( y = 7 - i \)[/tex], let's break down each calculation step-by-step:

1. Expression: [tex]\( x \cdot 2 \cdot y \)[/tex]

To compute this, let's perform the multiplication as follows:
- First, compute [tex]\( 2 \cdot y \)[/tex]:
[tex]\[ 2 \cdot (7 - i) = 14 - 2i \][/tex]
- Now, multiply [tex]\( x \)[/tex] by this result:
[tex]\[ (3 + 8i) \cdot (14 - 2i) \][/tex]
Using the distributive property (FOIL method):
[tex]\[ = 3 \cdot 14 + 3 \cdot (-2i) + 8i \cdot 14 - 8i \cdot 2i \][/tex]
[tex]\[ = 42 - 6i + 112i - 16i^2 \][/tex]
Recall [tex]\( i^2 = -1 \)[/tex], so:
[tex]\[ = 42 - 6i + 112i - 16(-1) \][/tex]
[tex]\[ = 42 - 6i + 112i + 16 \][/tex]
Combine the real and imaginary parts:
[tex]\[ = (42 + 16) + (-6i + 112i) \][/tex]
[tex]\[ = 58 + 106i \][/tex]

2. Expression: [tex]\( -5x + y \)[/tex]

To compute this, let's perform the addition and multiplication as follows:
- First, compute [tex]\( -5x \)[/tex]:
[tex]\[ -5 \cdot (3 + 8i) = -15 - 40i \][/tex]
- Now, add [tex]\( y \)[/tex] to this result:
[tex]\[ -15 - 40i + (7 - i) \][/tex]
Combine the real and imaginary parts:
[tex]\[ = (-15 + 7) + (-40i - i) \][/tex]
[tex]\[ = -8 - 41i \][/tex]

Now, we can pair the expressions with their corresponding results:

- For [tex]\( x \cdot 2 \cdot y \)[/tex], the result is [tex]\( 58 + 106i \)[/tex].
- For [tex]\( -5x + y \)[/tex], the result is [tex]\( -8 - 41i \)[/tex].

So, the pairing will be:

- [tex]\( x \cdot 2 \cdot y \longrightarrow 58 + 106i \)[/tex]
- [tex]\( -5 x + y \longrightarrow -8 - 41i \)[/tex]