Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).

A right triangle [tex]$ABC$[/tex] has complementary angles [tex]$A$[/tex] and [tex]$C$[/tex].

If [tex]$\sin (A) = \frac{24}{2 \pi}$[/tex], the value of [tex]$\cos (C) = \square$[/tex]

If [tex]$\cos (C) = \frac{20}{28}$[/tex], the value of [tex]$\sin (A) = \square$[/tex]



Answer :

Let's break down the problem step-by-step.

1. Given: The sine of angle A is expressed as:
[tex]\[ \sin(A) = \frac{24}{2 \pi} \][/tex]

Since angles [tex]\(A\)[/tex] and [tex]\(C\)[/tex] are complementary in a right triangle ([tex]\(A + C = 90^\circ\)[/tex]), we have the relationship:
[tex]\[ \sin(A) = \cos(C) \][/tex]

2. Calculating [tex]\(\cos(C)\)[/tex] using the given [tex]\(\sin(A)\)[/tex]:

Substitute the given value for [tex]\(\sin(A)\)[/tex]:
[tex]\[ \cos(C) = \sin(A) = \frac{24}{2 \pi} \][/tex]

To simplify:
[tex]\[ \cos(C) = \frac{24}{2 \pi} = \frac{24}{6.283185307} \approx 3.819718634205488 \][/tex]

Thus, the value of [tex]\(\cos(C)\)[/tex] is:
[tex]\[ \cos(C) \approx 3.819718634205488 \][/tex]

3. Given: The cosine of angle [tex]\(C\)[/tex] is expressed as:
[tex]\[ \cos(C) = \frac{20}{28} \][/tex]

We need to find [tex]\(\sin(A)\)[/tex]. Again, using the relationship between complementary angles in a right triangle:
[tex]\[ \sin(A) = \cos(C) \][/tex]

Substitute the given value for [tex]\(\cos(C)\)[/tex], and simplify:
[tex]\[ \sin(A) = \frac{20}{28} = \frac{20}{28} \approx 0.7142857142857143 \][/tex]

Thus, the value of [tex]\(\sin(A)\)[/tex] is:
[tex]\[ \sin(A) \approx 0.7142857142857143 \][/tex]

Final Answers:
[tex]\[ \cos(C) \approx 3.819718634205488 \][/tex]
[tex]\[ \sin(A) \approx 0.7142857142857143 \][/tex]