To solve this problem, let's first determine the value of [tex]\(3 + 7\)[/tex].
[tex]\[ 3 + 7 = 10 \][/tex]
Now, we need to compare this result with the values of each of the choices provided.
1. Choice A: [tex]\(9 + 4\)[/tex]
[tex]\[ 9 + 4 = 13 \][/tex]
2. Choice B: [tex]\(8 + 2\)[/tex]
[tex]\[ 8 + 2 = 10 \][/tex]
3. Choice C: [tex]\(7 + 3\)[/tex]
[tex]\[ 7 + 3 = 10 \][/tex]
4. Choice D: [tex]\(10 - 2\)[/tex]
[tex]\[ 10 - 2 = 8 \][/tex]
Now let's compare the value of [tex]\(10\)[/tex] with each of these results:
- [tex]\(10 > 13\)[/tex]: This is false.
- [tex]\(10 > 10\)[/tex]: This is false.
- [tex]\(10 > 10\)[/tex]: This is false.
- [tex]\(10 > 8\)[/tex]: This is true.
So, the only comparison that holds is [tex]\(10 > 8\)[/tex].
Hence, the best choice for the statement [tex]\(3 + 7 > ?\)[/tex] is:
[tex]\[ \boxed{10 - 2} \][/tex]