Evaluate the function [tex]\( f(x) = -3x \)[/tex] for the given values of [tex]\( x \)[/tex].

[tex]\[
f(x) = -3x
\][/tex]

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-2 & \\
\hline
-1 & \\
\hline
0 & \\
\hline
1 & \\
\hline
2 & \\
\hline
\end{tabular}



Answer :

To solve the given problem, where [tex]\( f(x) = -3x \)[/tex], we need to calculate the value of [tex]\( f(x) \)[/tex] for different values of [tex]\( x \)[/tex]. Let's fill in the table step by step:

1. Calculate [tex]\( f(x) \)[/tex] for [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = -3 \times (-2) = 6 \][/tex]
So, [tex]\( f(-2) = 6 \)[/tex].

2. Calculate [tex]\( f(x) \)[/tex] for [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = -3 \times (-1) = 3 \][/tex]
So, [tex]\( f(-1) = 3 \)[/tex].

3. Calculate [tex]\( f(x) \)[/tex] for [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = -3 \times 0 = 0 \][/tex]
So, [tex]\( f(0) = 0 \)[/tex].

4. Calculate [tex]\( f(x) \)[/tex] for [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = -3 \times 1 = -3 \][/tex]
So, [tex]\( f(1) = -3 \)[/tex].

5. Calculate [tex]\( f(x) \)[/tex] for [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = -3 \times 2 = -6 \][/tex]
So, [tex]\( f(2) = -6 \)[/tex].

Now let's fill in the table with these calculations:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -2 & 6 \\ \hline -1 & 3 \\ \hline 0 & 0 \\ \hline 1 & -3 \\ \hline 2 & -6 \\ \hline \end{array} \][/tex]

This gives us the final values for [tex]\( f(x) \)[/tex] for each [tex]\( x \)[/tex] as follows:
- [tex]\( f(-2) = 6 \)[/tex]
- [tex]\( f(-1) = 3 \)[/tex]
- [tex]\( f(0) = 0 \)[/tex]
- [tex]\( f(1) = -3 \)[/tex]
- [tex]\( f(2) = -6 \)[/tex]