Para este tipo de operaciones se identifica la jerarquía de solución. Se resuelven primero multiplicaciones y divisiones, luego sumas y restas de izquierda a derecha. La radicación es el proceso inverso de la potenciación que se aplica para obtener la base si se conoce la potencia y el exponente.

A) [tex](\sqrt{25} \times \sqrt{64})-(\sqrt{400} \div \sqrt[3]{125})+(\sqrt[3]{8} \times \sqrt{81})=[/tex]

B) [tex]\left\{\left[\left(3^4-7 \times 8 \div(8+2-4 \sqrt{4})+(-6+\sqrt[3]{8}) \times 5-\sqrt[5]{32}\right)\right]+5-\sqrt{9}\right\} \times \sqrt{\sqrt[3]{729}}=[/tex]



Answer :

¡Claro! Vamos a resolver la operación paso a paso, aplicando las reglas de jerarquía de operaciones.

### Parte A

La expresión a resolver es:
[tex]$(\sqrt{25} \times \sqrt{64}) - (\sqrt{400} \div \sqrt[3]{125}) + (\sqrt[3]{8} \times \sqrt{81})$[/tex]

1. Calcular las raíces:
- [tex]\(\sqrt{25} = 5\)[/tex]
- [tex]\(\sqrt{64} = 8\)[/tex]
- [tex]\(\sqrt{400} = 20\)[/tex]
- [tex]\(\sqrt[3]{125} = 5\)[/tex]
- [tex]\(\sqrt[3]{8} = 2\)[/tex]
- [tex]\(\sqrt{81} = 9\)[/tex]

2. Reemplazar las raíces en la expresión:
[tex]$(5 \times 8) - (20 \div 5) + (2 \times 9)$[/tex]

3. Realizar las multiplicaciones y divisiones:
[tex]$(40) - (4) + (18)$[/tex]

4. Realizar las sumas y restas:
[tex]$40 - 4 + 18$[/tex]
[tex]$= 54$[/tex]

El resultado de la Parte A es:
[tex]$54.0$[/tex]

### Parte B

La expresión a resolver es:
[tex]$\left\{\left[\left(3^4-7 \times 8 \div(8+2-4 \sqrt{4})+(-6+\sqrt[3]{8}) \times 5-\sqrt[5]{32}\right)\right]+5-\sqrt{9}\right\} \times \sqrt{\sqrt[3]{729}}$[/tex]

1. Calcular las raíces y exponentes dentro de la expresión:
- [tex]\(3^4 = 81\)[/tex]
- [tex]\(4 \sqrt{4} = 4 \times 2 = 8\)[/tex] (queremos simplificar la expresión dentro del paréntesis primero)
- [tex]\(\sqrt[3]{8} = 2\)[/tex]
- [tex]\(\sqrt[5]{32} = 2\)[/tex]
- [tex]\(\sqrt{9} = 3\)[/tex]
- [tex]\(\sqrt[3]{729} = 9\)[/tex] (esto porque [tex]\(729 = 9^3\)[/tex])
- [tex]\(\sqrt{9} = 3\)[/tex]

2. Simplificar el denominador [tex]\(8 + 2 - 4 \cdot \sqrt{4}\)[/tex]:
- [tex]\(4 \cdot 2 = 8\)[/tex]
- [tex]\(8 + 2 - 8 = 2\)[/tex]

3. Reemplazar los valores calculados en la expresión:
[tex]$\left\{\left[81 - 7 \times 8 \div 2 + (-6 + 2) \times 5 - 2 \right] + 5 - 3 \right\} \times 3$[/tex]

4. Realizar las operaciones dentro de los paréntesis:
- [tex]\(7 \times 8 = 56\)[/tex]
- [tex]\(56 \div 2 = 28\)[/tex]
- [tex]\(-6 + 2 = -4\)[/tex]
- [tex]\(-4 \times 5 = -20\)[/tex]

Reemplazar:
[tex]$\left\{\left[81 - 28 + (-20) - 2 \right] + 5 - 3 \right\} \times 3$[/tex]

5. Completar las sumas y restas dentro del paréntesis:
- [tex]\(81 - 28 = 53\)[/tex]
- [tex]\(53 - 20 = 33\)[/tex]
- [tex]\(33 - 2 = 31\)[/tex]

Reemplazar:
[tex]$\left\{31 + 5 - 3\right\} \times 3$[/tex]

6. Completar la operación dentro del paréntesis externo:
- [tex]\(31 + 5 = 36\)[/tex]
- [tex]\(36 - 3 = 33\)[/tex]

Finalmente:
[tex]$33 \times 3 = 99$[/tex]

El resultado de la Parte B es:
[tex]$99.0$[/tex]

Por lo tanto, los resultados finales son:

- Parte A: [tex]\(54.0\)[/tex]
- Parte B: [tex]\(99.0\)[/tex]