Sure, let's go through the calculations step-by-step to solve the problem. The values we are working with are:
- [tex]\(\sqrt{\frac{7}{11}}\)[/tex]
- [tex]\(-0.75\)[/tex]
- [tex]\(115\)[/tex]
- [tex]\(0.05\)[/tex]
Let's proceed with the steps to find the result.
### Step 1: Evaluate the Square Root Expression
First, let's evaluate the expression [tex]\(\sqrt{\frac{7}{11}}\)[/tex].
1. Simplify [tex]\(\frac{7}{11}\)[/tex]:
[tex]\[
\frac{7}{11} \approx 0.6363636363
\][/tex]
2. Take the square root of [tex]\(\frac{7}{11}\)[/tex]:
Simplifying [tex]\((\sqrt{\frac{7}{11}})^2:
\[
\left(\sqrt{0.6363636363}\right)^2 = 0.6363636363
\]
### Step 2: Addition Involving -0.75
Next, let's perform the addition:
1. Start with the value \(-0.75\)[/tex].
2. Add [tex]\(1\)[/tex] to [tex]\(-0.75\)[/tex]:
[tex]\[
-0.75 + 1 = 0.25
\][/tex]
### Step 3: Evaluate the Remaining Values
The other values are simply constants and do not require further evaluation:
1. The constant value [tex]\(115\)[/tex].
2. The constant value [tex]\(0.05\)[/tex].
### Summary of Results:
After performing these steps, we have obtained the following results:
1. The result of [tex]\(\sqrt{\frac{7}{11}}\)[/tex] squared is approximately [tex]\(0.6363636363\)[/tex].
2. The result of [tex]\(-0.75 + 1\)[/tex] is [tex]\(0.25\)[/tex].
3. The constant values [tex]\(115\)[/tex] and [tex]\(0.05\)[/tex] remain unchanged.
Thus, the final results are:
[tex]\[
(0.6363636363,\ 0.25,\ 115,\ 0.05)
\][/tex]