Answered

19. Find the line of best fit for the set of data:

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
2 & 2.9 \\
\hline
3.5 & 2 \\
\hline
-1.4 & 4.8 \\
\hline
4.2 & 1.5 \\
\hline
0 & 4 \\
\hline
-2.8 & 6 \\
\hline
1.5 & 3.5 \\
\hline
\end{tabular}
\][/tex]

A. [tex]\( y = 0.613x - 4.142 \)[/tex]
B. [tex]\( y = -0.613x - 4.142 \)[/tex]
C. [tex]\( y = 0.613x + 4.142 \)[/tex]
D. [tex]\( y = -0.613x + 4.142 \)[/tex]



Answer :

To find the line of best fit for the given data, we need to calculate the slope and y-intercept of the line that best represents this data. Here’s a step-by-step solution to determine the line of best fit:

1. List the given data:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 2 & 2.9 \\ \hline 3.5 & 2 \\ \hline -1.4 & 4.8 \\ \hline 4.2 & 1.5 \\ \hline 0 & 4 \\ \hline -2.8 & 6 \\ \hline 1.5 & 3.5 \\ \hline \end{array} \][/tex]

2. Calculate the slope ([tex]\( m \)[/tex]) and y-intercept ([tex]\( b \)[/tex]) for the line of best fit.

The calculated slope and y-intercept for this data set are:
[tex]\[ \text{slope} = -0.613 \][/tex]
[tex]\[ \text{intercept} = 4.142 \][/tex]

3. Construct the equation of the line of best fit.

Using the slope ([tex]\( m \)[/tex]) and y-intercept ([tex]\( b \)[/tex]), we can form the equation of the line:
[tex]\[ y = -0.613x + 4.142 \][/tex]

4. Determine the best fit equation from the provided options:

We compare the constructed equation with the provided options:
- [tex]\( y = 0.613x - 4.142 \)[/tex]
- [tex]\( y = -0.613x - 4.142 \)[/tex]
- [tex]\( y = 0.613x + 4.142 \)[/tex]
- [tex]\( y = -0.613x + 4.142 \)[/tex]

The correct form that matches [tex]\( y = -0.613x + 4.142 \)[/tex] is the last option.

Result:

The best fit equation for the given set of data is:
[tex]\[ y = -0.613x + 4.142 \][/tex]