Select the correct answer.

How much work is required to lift an object with a mass of 5.0 kilograms to a height of 3.5 meters?

A. 17 joules
B. [tex]1.7 \times 10^2[/tex] joules
C. [tex]1.9 \times 10^2[/tex] joules
D. [tex]2.8 \times 10^2[/tex] joules



Answer :

To determine the work required to lift an object, we use the formula for gravitational potential energy:

[tex]\[ \text{Work} = m \times g \times h \][/tex]

where
- [tex]\( m \)[/tex] is the mass of the object in kilograms,
- [tex]\( g \)[/tex] is the acceleration due to gravity (9.8 m/s²),
- [tex]\( h \)[/tex] is the height in meters.

Given:
- [tex]\( m = 5.0 \)[/tex] kg
- [tex]\( h = 3.5 \)[/tex] m
- [tex]\( g = 9.8 \)[/tex] m/s²

We substitute these values into the formula:

[tex]\[ \text{Work} = 5.0 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3.5 \, \text{m} \][/tex]

[tex]\[ \text{Work} = 5.0 \times 9.8 \times 3.5 \][/tex]

[tex]\[ \text{Work} = 171.5 \, \text{joules} \][/tex]

Thus, the amount of work required to lift an object with a mass of 5.0 kilograms to a height of 3.5 meters is 171.5 joules.

When comparing this result to the given answer choices:
- A. 17 joules
- B. [tex]\( 1.7 \times 10^2 \)[/tex] joules
- C. [tex]\( 1.9 \times 10^2 \)[/tex] joules
- D. [tex]\( 2.8 \times 10^2 \)[/tex] joules

The closest and correct answer is:
B. [tex]\( 1.7 \times 10^2 \)[/tex] joules