The one-to-one function [tex]$f$[/tex] is defined below.

[tex] f(x) = \sqrt[3]{x - 7} + 9 [/tex]

Find [tex]$f^{-1}(x)$[/tex], where [tex][tex]$f^{-1}$[/tex][/tex] is the inverse of [tex]$f$[/tex].

[tex] f^{-1}(x) = \square [/tex]



Answer :

To find the inverse [tex]\( f^{-1}(x) \)[/tex] of the function [tex]\( f(x) = \sqrt[3]{x-7} + 9 \)[/tex], we will follow these steps:

1. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = \sqrt[3]{x-7} + 9 \][/tex]

2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
- First, isolate the cube root term by subtracting 9 from both sides:
[tex]\[ y - 9 = \sqrt[3]{x-7} \][/tex]

- Next, cube both sides to remove the cube root:
[tex]\[ (y - 9)^3 = x - 7 \][/tex]

- Finally, solve for [tex]\( x \)[/tex] by adding 7 to both sides:
[tex]\[ x = (y - 9)^3 + 7 \][/tex]

3. Express the inverse function:
- Replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to get the inverse function:
[tex]\[ f^{-1}(x) = (x - 9)^3 + 7 \][/tex]

Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ f^{-1}(x) = (x - 9)^3 + 7 \][/tex]