Answer :

To expand the expression [tex]\(\sqrt{\frac{1-x}{1+x}}\)[/tex] around [tex]\(x=0\)[/tex], we can use a Maclaurin series. The Maclaurin series expansion of a function [tex]\(f(x)\)[/tex] around [tex]\(x = 0\)[/tex] is given by:

[tex]\[ f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots \][/tex]

Let's break down the expansion step by step.

1. Evaluate the function at [tex]\(x=0\)[/tex]:
[tex]\[ f(x) = \sqrt{\frac{1-x}{1+x}} \][/tex]
At [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = \sqrt{\frac{1-0}{1+0}} = \sqrt{1} = 1 \][/tex]

2. Find the first derivative and evaluate at [tex]\(x=0\)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} \left(\sqrt{\frac{1-x}{1+x}}\right) \][/tex]
Using the chain rule and quotient rule, we get:
[tex]\[ f'(x) = \frac{-1(1+x)-(1-x)1}{2\sqrt{(1-x)(1+x)}(1+x)^2} = \frac{-(1+x)-(1-x)}{2(1+x)\sqrt{(1-x)(1+x)}} = \frac{-2}{2(1+x)\sqrt{(1-x)(1+x)}} = \frac{-1}{(1+x)\sqrt{(1-x)(1+x)}} \][/tex]
At [tex]\(x = 0\)[/tex]:
[tex]\[ f'(0) = \frac{-1}{1 \cdot \sqrt{1}} = -1 \][/tex]

3. Find the second derivative and evaluate at [tex]\(x=0\)[/tex]:
This process involves taking another derivative of the first derivative, which is quite elaborate. However, continuing in this manner:
[tex]\[ f''(x) = \ldots (through some laborious steps) \][/tex]
At [tex]\(x = 0\)[/tex]:
[tex]\[ f''(0) = \frac{1}{2} \][/tex]

Continuing this process for higher-order derivatives, let's list the key terms obtained:

4. Combine all evaluated terms:
The expansion up to the required order will provide the polynomial form.

Upon fully expanding as requested, we obtain the series:

[tex]\[ \sqrt{\frac{1-x}{1+x}} = 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + \frac{3x^4}{8} - \frac{3x^5}{8} + \frac{5x^6}{16} - \frac{5x^7}{16} + \frac{35x^8}{128} - \frac{35x^9}{128} + \ldots \][/tex]

In simpler terms:

[tex]\[ = 1 - x + \frac{x^2}{2} - \frac{x^3}{2} + \frac{3x^4}{8} - \frac{3x^5}{8} + \frac{5x^6}{16} - \frac{5x^7}{16} + \frac{35x^8}{128} - \frac{35x^9}{128}. \][/tex]

Thus, the expanded series expression for [tex]\(\sqrt{\frac{1-x}{1+x}}\)[/tex] up to [tex]\(x^9\)[/tex] is:

[tex]\[ - \frac{35x^9}{128} + \frac{35x^8}{128} - \frac{5x^7}{16} + \frac{5x^6}{16} - \frac{3x^5}{8} + \frac{3x^4}{8} - \frac{x^3}{2} + \frac{x^2}{2} - x + 1. \][/tex]