Simplify: [tex]\frac{m+\left(m n^2\right)^{1 / 3}+\left(m^2 n\right)^{1 / 3}}{m-n} \times\left(1-\frac{n^{1 / 3}}{m^{1 / 3}}\right)[/tex]



Answer :

Alright, let's simplify the given expression step-by-step:

The expression we are working with is:

[tex]\[ \frac{m + \left(m n^2\right)^{1/3} + \left(m^2 n\right)^{1/3}}{m - n} \times \left(1 - \frac{n^{1/3}}{m^{1/3}}\right) \][/tex]

First, let's rewrite each term to make it easier to manipulate. Let:

[tex]\[ A = m \][/tex]
[tex]\[ B = \left(m n^2\right)^{1/3} = m^{1/3} n^{2/3} \][/tex]
[tex]\[ C = \left(m^2 n\right)^{1/3} = m^{2/3} n^{1/3} \][/tex]

Now the expression becomes:

[tex]\[ \frac{A + B + C}{m - n} \times \left(1 - \frac{n^{1/3}}{m^{1/3}}\right) \][/tex]

Substitute [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex]:

[tex]\[ \frac{m + m^{1/3} n^{2/3} + m^{2/3} n^{1/3}}{m - n} \times \left(1 - \frac{n^{1/3}}{m^{1/3}}\right) \][/tex]

Next, observe the two parts of the expression that need to be simplified:

1. The fraction part:

[tex]\[ \frac{m + m^{1/3} n^{2/3} + m^{2/3} n^{1/3}}{m - n} \][/tex]

2. The multiplicative factor:

[tex]\[ 1 - \frac{n^{1/3}}{m^{1/3}} \][/tex]

Combine these parts together:

[tex]\[ \left(\frac{m + m^{1/3} n^{2/3} + m^{2/3} n^{1/3}}{m - n}\right) \times \left(1 - \frac{n^{1/3}}{m^{1/3}}\right) \][/tex]

We multiply them carefully:

[tex]\[ \left(\frac{m + m^{1/3} n^{2/3} + m^{2/3} n^{1/3}}{m - n}\right) \times \left(1 - \frac{n^{1/3}}{m^{1/3}}\right) \][/tex]

The simplified form of this expression is:

[tex]\[ \boxed{\frac{(m^{1/3} - n^{1/3})(m + (m n^2)^{1/3} + (m^2 n)^{1/3})}{m^{1/3}(m - n)}} \][/tex]

This completes our step-by-step solution.