Answer :
Sure, let's break down the solution step-by-step.
1. Identify the dimensions of the field:
- Length [tex]\( L \)[/tex] = 360 feet
- Width [tex]\( W \)[/tex] = 150 feet
2. Calculate the perimeter of the field:
- The perimeter [tex]\( P \)[/tex] of a rectangle is given by the formula:
[tex]\[ P = 2 \times (L + W) \][/tex]
- Plugging in the given dimensions:
[tex]\[ P = 2 \times (360 + 150) = 2 \times 510 = 1020 \, \text{feet} \][/tex]
3. Calculate the total distance mowed for two laps:
- Jonathan mows the perimeter of the field twice. Therefore, the total distance mowed [tex]\( D \)[/tex] is:
[tex]\[ D = 2 \times P \][/tex]
- Substituting the perimeter we calculated:
[tex]\[ D = 2 \times 1020 = 2040 \, \text{feet} \][/tex]
So, Jonathan mowed a total of 2040 feet for two laps around the football field.
1. Identify the dimensions of the field:
- Length [tex]\( L \)[/tex] = 360 feet
- Width [tex]\( W \)[/tex] = 150 feet
2. Calculate the perimeter of the field:
- The perimeter [tex]\( P \)[/tex] of a rectangle is given by the formula:
[tex]\[ P = 2 \times (L + W) \][/tex]
- Plugging in the given dimensions:
[tex]\[ P = 2 \times (360 + 150) = 2 \times 510 = 1020 \, \text{feet} \][/tex]
3. Calculate the total distance mowed for two laps:
- Jonathan mows the perimeter of the field twice. Therefore, the total distance mowed [tex]\( D \)[/tex] is:
[tex]\[ D = 2 \times P \][/tex]
- Substituting the perimeter we calculated:
[tex]\[ D = 2 \times 1020 = 2040 \, \text{feet} \][/tex]
So, Jonathan mowed a total of 2040 feet for two laps around the football field.