A hyperbola centered at the origin has a vertex at [tex]\((0,36)\)[/tex] and a focus at [tex]\((0,39)\)[/tex].
[tex]\[
\begin{array}{|c|c|}
\hline
\text{Vertices: } (-a, 0), (a, 0) & \text{Vertices: } (0,-a), (0, a) \\
\text{Foci: } (-c, 0), (c, 0) & \text{Foci: } (0,-c), (0, c) \\
\text{Asymptotes: } y= \pm \frac{b}{a} x & \text{Asymptotes: } y= \pm \frac{a}{b} x \\
\text{Directrices: } x= \pm \frac{a^2}{c} & \text{Directrices: } y= \pm \frac{a^2}{c} \\
\text{Standard Equation: } \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 & \text{Standard Equation: } \frac{y^2}{a^2}-\frac{x^2}{b^2}=1 \\
\hline
\end{array}
\][/tex]
Which are the equations of the directrices?