Select the best answer for the question.

14. The sum of [tex]$\frac{1}{6}$[/tex], [tex]$\frac{2}{3}$[/tex], and [tex][tex]$\frac{1}{4}$[/tex][/tex] is:

A. [tex]$\frac{13}{12}$[/tex], or [tex]$1 \frac{1}{12}$[/tex].

B. [tex][tex]$\frac{11}{12}$[/tex][/tex].

C. [tex]$\frac{2}{72}$[/tex], or [tex]$\frac{1}{36}$[/tex].

D. [tex][tex]$\frac{4}{12}$[/tex][/tex], or [tex]$\frac{1}{3}$[/tex].



Answer :

To find the sum of the fractions [tex]\( \frac{1}{6}, \frac{2}{3}, \)[/tex] and [tex]\( \frac{1}{4} \)[/tex] and select the best match from the given choices, let's follow these steps:

1. Convert each fraction to a decimal:
- [tex]\(\frac{1}{6} = 0.16666666666666666 \)[/tex]
- [tex]\(\frac{2}{3} = 0.6666666666666666 \)[/tex]
- [tex]\(\frac{1}{4} = 0.25 \)[/tex]

2. Add these decimal values:
- [tex]\(0.16666666666666666 + 0.6666666666666666 + 0.25 = 1.0833333333333333\)[/tex]

3. Convert the sum of decimals back to a fraction:
- The decimal [tex]\( 1.0833333333333333 \)[/tex] converts to the fraction [tex]\( \frac{13}{12} \)[/tex].

4. Match the fraction sum to the given choices:
- Choice A: [tex]\( \frac{13}{12} \)[/tex] or [tex]\(1 \frac{1}{12} \)[/tex]
- Choice B: [tex]\( \frac{11}{12} \)[/tex]
- Choice C: [tex]\( \frac{2}{72} \)[/tex] or [tex]\( \frac{1}{36} \)[/tex]
- Choice D: [tex]\( \frac{4}{12} \)[/tex] or [tex]\( \frac{1}{3} \)[/tex]

Therefore, the sum of [tex]\( \frac{1}{6}, \frac{2}{3}, \)[/tex] and [tex]\( \frac{1}{4} \)[/tex] is [tex]\( \frac{13}{12} \)[/tex], which corresponds to Choice A. Hence, the best answer is:

A. [tex]\( \frac{13}{12} \)[/tex], or [tex]\(1 \frac{1}{12} \)[/tex]