Determine if a Relationship Is a Function

Which represents a function?

1. [tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
-10 & 84 \\
\hline
-5 & 31.5 \\
\hline
0 & 4 \\
\hline
5 & 1.5 \\
\hline
10 & 24 \\
\hline
\end{tabular}
\][/tex]

2. [tex]\[(4,5), (6,-2), (-5,0), (6,1)\][/tex]



Answer :

To determine which of the given sets of data represents a function, we need to check if for each input value ([tex]\(x\)[/tex]), there is exactly one corresponding output value ([tex]\(y\)[/tex]).

### Explanation:
A relation is a function if and only if no [tex]\(x\)[/tex]-value is repeated with different [tex]\(y\)[/tex]-values.

### Given Data:

1. Table Data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -10 & 84 \\ \hline -5 & 31.5 \\ \hline 0 & 4 \\ \hline 5 & 1.5 \\ \hline 10 & 24 \\ \hline \end{array} \][/tex]

2. Set of Pairs:
[tex]\[ (4, 5), (6, -2), (-5, 0), (6, 1) \][/tex]

### Step-by-Step Solution:

1. Check the Table Data:
- The [tex]\(x\)[/tex]-values are: [tex]\(-10, -5, 0, 5, 10\)[/tex]
- Check if there are any repeating [tex]\(x\)[/tex]-values:
- Each [tex]\(x\)[/tex]-value is unique.
- Since no [tex]\(x\)[/tex]-value is repeated, this set of data represents a function.

2. Check the Set of Pairs:
- The pairs are: [tex]\((4, 5), (6, -2), (-5, 0), (6, 1)\)[/tex]
- The [tex]\(x\)[/tex]-values are: [tex]\(4, 6, -5, 6\)[/tex]
- Observe that the [tex]\(x\)[/tex]-value [tex]\(6\)[/tex] is repeated with different corresponding [tex]\(y\)[/tex]-values ([tex]\(-2\)[/tex] and [tex]\(1\)[/tex]).
- Since the [tex]\(x\)[/tex]-value [tex]\(6\)[/tex] corresponds to two different [tex]\(y\)[/tex]-values, this set of data does not represent a function.

### Conclusion:

- The table data represents a function.
- The set of pairs [tex]\((4, 5), (6, -2), (-5, 0), (6, 1)\)[/tex] does not represent a function.

Therefore, the results are:

- For the table data, it represents a function: True
- For the set of pairs, it does not represent a function: False