Evaluate the expression [tex]\(3(x-1)^2 + 2x - 7\)[/tex] for [tex]\(x = 3\)[/tex].

Step 1: Substitute 3 for [tex]\(x\)[/tex].

[tex]\[
\begin{array}{l}
3(x-1)^2 + 2(3) - 7 \\
3(3-1)^2 + 2(3) - 7 \\
3(2)^2 + 2(3) - 7 \\
\end{array}
\][/tex]

Step 2: Evaluate the parentheses.

[tex]\[
3 - 1 = 2
\][/tex]

Step 3: Apply the exponent.

[tex]\[
(2)^2 = 4
\][/tex]

Step 4: Multiply.

[tex]\[
3 \times 4 = \square \quad \text{and} \quad 2 \times 3 = \square
\][/tex]



Answer :

Evaluate the expression [tex]\(3(x-1)^2 + 2x - 7\)[/tex] for [tex]\(x=3\)[/tex].

### Step 1
Substitute 3 for [tex]\(x\)[/tex]:
[tex]\[3(3-1)^2 + 2(3) - 7\][/tex]

### Step 2
Evaluate the expression inside the parentheses first:
[tex]\[3(3 - 1)^2 + 2(3) - 7\][/tex]
[tex]\[3(2)^2 + 2(3) - 7\][/tex]

### Step 3
Next, evaluate the exponent:
[tex]\((2)^2 = 4\)[/tex]
[tex]\[3 \cdot 4 + 2(3) - 7\][/tex]

### Step 4
Proceed with the multiplication:
[tex]\[3 \times 4 = 12\][/tex]
[tex]\[2 \times 3 = 6\][/tex]

### Step 5
Substitute the products back into the expression:
[tex]\[12 + 6 - 7\][/tex]

### Step 6
Finally, perform the addition and subtraction:
[tex]\[12 + 6 = 18\][/tex]
[tex]\[18 - 7 = 11\][/tex]

Therefore, the value of the expression [tex]\(3(x-1)^2 + 2x - 7\)[/tex] for [tex]\(x = 3\)[/tex] is [tex]\(11\)[/tex].