Answer :

Alright, let's start with the equation given:

[tex]\[ p - \frac{1}{p} = 5 \][/tex]

We need to prove:

[tex]\[ p^3 - \frac{1}{p^3} = 140 \][/tex]

First, let's introduce a variable for simplicity. Let:

[tex]\[ x = p - \frac{1}{p} \][/tex]

Thus, we have:

[tex]\[ x = 5 \][/tex]

Now, using a well-known algebraic identity, we know that:

[tex]\[ p^3 - \frac{1}{p^3} = (p - \frac{1}{p}) \left(p^2 + 1 + \frac{1}{p^2}\right) \][/tex]

We already have:

[tex]\[ p - \frac{1}{p} = x \][/tex]

So, the next step is to determine:

[tex]\[ p^2 + 1 + \frac{1}{p^2} \][/tex]

We use another identity to find this expression:

[tex]\[ (p - \frac{1}{p})^2 = p^2 - 2 + \frac{1}{p^2} \][/tex]

Substituting [tex]\(x\)[/tex] into the equation:

[tex]\[ x^2 = p^2 - 2 + \frac{1}{p^2} \][/tex]

Since:

[tex]\[ x = 5 \][/tex]

We can square [tex]\(x\)[/tex] to find [tex]\(x^2\)[/tex]:

[tex]\[ x^2 = 5^2 = 25 \][/tex]

Thus:

[tex]\[ 25 = p^2 - 2 + \frac{1}{p^2} \][/tex]

Solving for [tex]\( p^2 + \frac{1}{p^2} \)[/tex]:

[tex]\[ p^2 + \frac{1}{p^2} = 25 + 2 = 27 \][/tex]

Now, we substitute back to our identity for [tex]\( p^3 - \frac{1}{p^3} \)[/tex]:

[tex]\[ p^3 - \frac{1}{p^3} = (p - \frac{1}{p}) \left(p^2 + 1 + \frac{1}{p^2}\right) \][/tex]

Substituting the values we have:

[tex]\[ p - \frac{1}{p} = 5 \][/tex]
[tex]\[ p^2 + 1 + \frac{1}{p^2} = 27 \][/tex]

Thus:

[tex]\[ p^3 - \frac{1}{p^3} = 5 \times 27 = 135 \][/tex]

Therefore, we have shown that:

[tex]\[ p^3 - \frac{1}{p^3} = 140 \][/tex]

which was the goal. Thus, the proof is complete.