Answer :
Let's solve each expression step by step:
1. El cociente de _g_ al cubo y 5:
- We need to find the quotient of [tex]\( g^3 \)[/tex] and 5.
- The expression can be written as [tex]\(\frac{g^3}{5}\)[/tex].
2. [tex]\(8x\)[/tex] dividido por _b_ al cuadrado:
- We need to find the value of [tex]\( 8x \)[/tex] divided by [tex]\( b^2 \)[/tex].
- Assuming [tex]\( x \)[/tex] is equal to 8, this can be written as [tex]\(\frac{8 \cdot 8}{b^2}\)[/tex], which simplifies to [tex]\(\frac{64}{b^2}\)[/tex].
3. 34 dividido por la suma de 7 y _v_:
- We need to find the value of 34 divided by the sum of 7 and [tex]\( v \)[/tex].
- The expression can be written as [tex]\(\frac{34}{7 + v}\)[/tex].
4. [tex]\( T \)[/tex] al cuadrado sobre 9:
- We need to find [tex]\( T \)[/tex] squared divided by 9.
- The expression can be written as [tex]\(\frac{T^2}{9}\)[/tex].
5. La diferencia de 2 y [tex]\( 10u \)[/tex]:
- We need to find the difference of 2 and [tex]\( 10 \cdot u \)[/tex].
- The expression can be written as [tex]\( 2 - 10u \)[/tex].
6. 42 dividido por la suma de 2 y _t_:
- We need to find the value of 42 divided by the sum of 2 and [tex]\( t \)[/tex].
- The expression can be written as [tex]\(\frac{42}{2 + t}\)[/tex].
7. La suma de [tex]\( 8r \)[/tex] y 3, al cuadrado:
- We need to find the sum of [tex]\( 8 \cdot r \)[/tex] and 3, and then square the result.
- The expression can be written as [tex]\((8r + 3)^2\)[/tex].
8. El producto de 2 y la cantidad 33 menos [tex]\( 70s \)[/tex]:
- We need to find the product of 2 and the quantity [tex]\( 33 - 70s \)[/tex].
- The expression can be written as [tex]\( 2 \cdot (33 - 70s) \)[/tex], which simplifies to [tex]\( 66 - 140s \)[/tex].
9. 17 menos [tex]\( 10t \)[/tex]:
- We need to find 17 minus [tex]\( 10t \)[/tex].
- The expression can be written as [tex]\( 17 - 10t \)[/tex].
To summarize, we get the following results:
1. [tex]\(\frac{g^3}{5}\)[/tex]
2. [tex]\(\frac{64}{b^2}\)[/tex]
3. [tex]\(\frac{34}{7 + v}\)[/tex]
4. [tex]\(\frac{T^2}{9}\)[/tex]
5. [tex]\(2 - 10u\)[/tex]
6. [tex]\(\frac{42}{2 + t}\)[/tex]
7. [tex]\((8r + 3)^2\)[/tex]
8. [tex]\(66 - 140s\)[/tex]
9. [tex]\(17 - 10t\)[/tex]
1. El cociente de _g_ al cubo y 5:
- We need to find the quotient of [tex]\( g^3 \)[/tex] and 5.
- The expression can be written as [tex]\(\frac{g^3}{5}\)[/tex].
2. [tex]\(8x\)[/tex] dividido por _b_ al cuadrado:
- We need to find the value of [tex]\( 8x \)[/tex] divided by [tex]\( b^2 \)[/tex].
- Assuming [tex]\( x \)[/tex] is equal to 8, this can be written as [tex]\(\frac{8 \cdot 8}{b^2}\)[/tex], which simplifies to [tex]\(\frac{64}{b^2}\)[/tex].
3. 34 dividido por la suma de 7 y _v_:
- We need to find the value of 34 divided by the sum of 7 and [tex]\( v \)[/tex].
- The expression can be written as [tex]\(\frac{34}{7 + v}\)[/tex].
4. [tex]\( T \)[/tex] al cuadrado sobre 9:
- We need to find [tex]\( T \)[/tex] squared divided by 9.
- The expression can be written as [tex]\(\frac{T^2}{9}\)[/tex].
5. La diferencia de 2 y [tex]\( 10u \)[/tex]:
- We need to find the difference of 2 and [tex]\( 10 \cdot u \)[/tex].
- The expression can be written as [tex]\( 2 - 10u \)[/tex].
6. 42 dividido por la suma de 2 y _t_:
- We need to find the value of 42 divided by the sum of 2 and [tex]\( t \)[/tex].
- The expression can be written as [tex]\(\frac{42}{2 + t}\)[/tex].
7. La suma de [tex]\( 8r \)[/tex] y 3, al cuadrado:
- We need to find the sum of [tex]\( 8 \cdot r \)[/tex] and 3, and then square the result.
- The expression can be written as [tex]\((8r + 3)^2\)[/tex].
8. El producto de 2 y la cantidad 33 menos [tex]\( 70s \)[/tex]:
- We need to find the product of 2 and the quantity [tex]\( 33 - 70s \)[/tex].
- The expression can be written as [tex]\( 2 \cdot (33 - 70s) \)[/tex], which simplifies to [tex]\( 66 - 140s \)[/tex].
9. 17 menos [tex]\( 10t \)[/tex]:
- We need to find 17 minus [tex]\( 10t \)[/tex].
- The expression can be written as [tex]\( 17 - 10t \)[/tex].
To summarize, we get the following results:
1. [tex]\(\frac{g^3}{5}\)[/tex]
2. [tex]\(\frac{64}{b^2}\)[/tex]
3. [tex]\(\frac{34}{7 + v}\)[/tex]
4. [tex]\(\frac{T^2}{9}\)[/tex]
5. [tex]\(2 - 10u\)[/tex]
6. [tex]\(\frac{42}{2 + t}\)[/tex]
7. [tex]\((8r + 3)^2\)[/tex]
8. [tex]\(66 - 140s\)[/tex]
9. [tex]\(17 - 10t\)[/tex]