Answer :

To find the value of [tex]\( x \)[/tex] in the equation [tex]\( 2x + 3y = 36 \)[/tex] when [tex]\( y = 6 \)[/tex], follow these steps:

1. Substitute [tex]\( y = 6 \)[/tex] into the equation:
[tex]\[ 2x + 3(6) = 36 \][/tex]

2. Simplify the equation by calculating [tex]\( 3 \cdot 6 \)[/tex]:
[tex]\[ 2x + 18 = 36 \][/tex]

3. Next, isolate [tex]\( x \)[/tex] by subtracting 18 from both sides of the equation:
[tex]\[ 2x + 18 - 18 = 36 - 18 \][/tex]
Simplify:
[tex]\[ 2x = 18 \][/tex]

4. Finally, solve for [tex]\( x \)[/tex] by dividing both sides by 2:
[tex]\[ x = \frac{18}{2} \][/tex]
Simplify:
[tex]\[ x = 9 \][/tex]

Thus, the value of [tex]\( x \)[/tex] is [tex]\( \boxed{9} \)[/tex].