Line [tex]\( JK \)[/tex] passes through points [tex]\( J(-4,-5) \)[/tex] and [tex]\( K(-6,3) \)[/tex]. If the equation of the line is written in slope-intercept form, [tex]\( y = mx + b \)[/tex], what is the value of [tex]\( b \)[/tex]?

A. [tex]\(-21\)[/tex]
B. [tex]\(-4\)[/tex]
C. [tex]\(11\)[/tex]
D. [tex]\(27\)[/tex]



Answer :

To determine the value of [tex]\( b \)[/tex] (the y-intercept) in the equation of the line that passes through points [tex]\( J(-4, -5) \)[/tex] and [tex]\( K(-6, 3) \)[/tex], we proceed as follows:

1. Find the slope (m) of the line:

The formula for the slope between two points [tex]\( J(x1, y1) \)[/tex] and [tex]\( K(x2, y2) \)[/tex] is:
[tex]\[ m = \frac{y2 - y1}{x2 - x1} \][/tex]

For points [tex]\( J(-4, -5) \)[/tex] and [tex]\( K(-6, 3) \)[/tex]:
[tex]\[ m = \frac{3 - (-5)}{-6 - (-4)} = \frac{3 + 5}{-6 + 4} = \frac{8}{-2} = -4 \][/tex]

2. Use the slope-intercept form (y = mx + b) to find the y-intercept (b):

The slope-intercept form of the equation is:
[tex]\[ y = mx + b \][/tex]

Substitute one of the points and the calculated slope into the equation to solve for [tex]\( b \)[/tex]. Using point [tex]\( J(-4, -5) \)[/tex]:
[tex]\[ -5 = -4(-4) + b \][/tex]
Simplify and solve for [tex]\( b \)[/tex]:
[tex]\[ -5 = 16 + b \][/tex]
[tex]\[ b = -5 - 16 \][/tex]
[tex]\[ b = -21 \][/tex]

So, the y-intercept [tex]\( b \)[/tex] for the line passing through points [tex]\( J(-4,-5) \)[/tex] and [tex]\( K(-6,3) \)[/tex] is [tex]\(-21\)[/tex].

Therefore, the correct answer is:
[tex]\[ -21 \][/tex]