\begin{tabular}{lcc|}
\hline & School A & School B \\
\hline Number of students & 3000 & 4000 \\
Number of teachers & 190 & 380 \\
Graduation rate & [tex]$86 \%$[/tex] & [tex]$90 \%$[/tex] \\
\hline Budget per student & [tex]$\$[/tex] 10,500[tex]$ & $[/tex]\[tex]$ 10,000$[/tex] \\
\hline \% of students in sports club & [tex]$62 \%$[/tex] & [tex]$68 \%$[/tex] \\
\hline Number of sports medals won & 9 & 7 \\
\hline SAT average & 1200 & 1050 \\
\hline SAT range (max-min) & 900 & 700 \\
\hline
\end{tabular}

Analia wants to know which school has the lower SAT range relative to the resources invested per student. SAT range is a measure of inequality, which we want to minimize as much as possible.

1. Identify the two different ways Analia thought of to define this quantity among the following options:



Answer :

To address Analia's inquiry about the SAT range relative to the resources invested per student, we shall look at two different ways to define this relationship. Let’s explore these definitions step by step.

### First Definition:
SAT range divided by budget per student

1. School A:
- SAT range: 900
- Budget per student: 10500

Calculation:
[tex]\[ \text{Quantity 1}_A = \frac{\text{SAT range}_A}{\text{Budget per student}_A} = \frac{900}{10500} \][/tex]

The result is approximately:
[tex]\[ \text{Quantity 1}_A \approx 0.0857 \][/tex]

2. School B:
- SAT range: 700
- Budget per student: 10000

Calculation:
[tex]\[ \text{Quantity 1}_B = \frac{\text{SAT range}_B}{\text{Budget per student}_B} = \frac{700}{10000} \][/tex]

The result is:
[tex]\[ \text{Quantity 1}_B = 0.07 \][/tex]

Using this definition, we get:
[tex]\[ 0.0857 \quad \text{(School A)} \quad \text{and} \quad 0.07 \quad \text{(School B)} \][/tex]

### Second Definition:
Budget per student divided by SAT range

1. School A:
- Budget per student: 10500
- SAT range: 900

Calculation:
[tex]\[ \text{Quantity 2}_A = \frac{\text{Budget per student}_A}{\text{SAT range}_A} = \frac{10500}{900} \][/tex]

The result is approximately:
[tex]\[ \text{Quantity 2}_A \approx 11.67 \][/tex]

2. School B:
- Budget per student: 10000
- SAT range: 700

Calculation:
[tex]\[ \text{Quantity 2}_B = \frac{\text{Budget per student}_B}{\text{SAT range}_B} = \frac{10000}{700} \][/tex]

The result is approximately:
[tex]\[ \text{Quantity 2}_B \approx 14.29 \][/tex]

Using this definition, we get:
[tex]\[ 11.67 \quad \text{(School A)} \quad \text{and} \quad 14.29 \quad \text{(School B)} \][/tex]

### Conclusion

From the two definitions:

1. SAT range divided by budget per student:

[tex]\[ 0.0857 \quad \text{(School A)} \quad \text{vs.} \quad 0.07 \quad \text{(School B)} \][/tex]

2. Budget per student divided by SAT range:

[tex]\[ 11.67 \quad \text{(School A)} \quad \text{vs.} \quad 14.29 \quad \text{(School B)} \][/tex]

Therefore, these two definitions can be chosen to compare the SAT range relative to the resources invested per student.