Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.

Match the circle equations in general form with their corresponding equations in standard form.

[tex]\[
\begin{array}{l|l}
x^2+y^2-4x+12y-20=0 & (x-2)^2+(y+6)^2=60 \\
x^2+y^2+6x-8y-10=0 & (x+1)^2+(y-6)^2=46 \\
3x^2+3y^2+12x+18y-15=0 & (x+2)^2+(y+3)^2=18 \\
5x^2+5y^2-10x+20y-30=0 & (x-6)^2+(y-4)^2=56 \\
2x^2+2y^2-24x-16y-8=0 & x^2+y^2+2x-12y-9=0
\end{array}
\][/tex]



Answer :

Certainly! To match the equations in general form with their corresponding equations in standard form, follow these steps:

1. General Form: [tex]\(x^2 + y^2 - 4x + 12y - 20 = 0\)[/tex]
- Corresponding Standard Form: [tex]\((x-6)^2 + (y-4)^2 = 56\)[/tex]

2. General Form: [tex]\(x^2 + y^2 + 6x - 8y - 10 = 0\)[/tex]
- Corresponding Standard Form: [tex]\((x-2)^2 + (y+6)^2 = 60\)[/tex]

3. General Form: [tex]\(3x^2 + 3y^2 + 12x + 18y - 15 = 0\)[/tex]
- Corresponding Standard Form: [tex]\((x+2)^2 + (y+3)^2 = 18\)[/tex]

4. General Form: [tex]\(5x^2 + 5y^2 - 10x + 20y - 30 = 0\)[/tex]
- Corresponding Standard Form: [tex]\((x+1)^2 + (y-6)^2 = 46\)[/tex]

The correct pairs are as follows:

[tex]\[ \begin{array}{l|l} x^2 + y^2 - 4x + 12y - 20 = 0 & (x-6)^2 + (y-4)^2 = 56 \\ x^2 + y^2 + 6x - 8y - 10 = 0 & (x-2)^2 + (y+6)^2 = 60 \\ 3x^2 + 3y^2 + 12x + 18y - 15 = 0 & (x+2)^2 + (y+3)^2 = 18 \\ 5x^2 + 5y^2 - 10x + 20y - 30 = 0 & (x+1)^2 + (y-6)^2 = 46 \\ \end{array} \][/tex]

Remember, the equation [tex]\(2x^2 + 2y^2 - 24x - 16y - 8 = 0\)[/tex] did not match with any of the provided standard form equations.