Answered

Kyle has a mass of [tex]$54 \, \text{kg}$[/tex] and is jogging at a velocity of [tex]$3 \, \text{m/s}$[/tex]. What is Kyle's kinetic energy?

(Formula: [tex]KE = \frac{1}{2} mv^2[/tex])

A. [tex]18 \, \text{J}[/tex]
B. [tex]81 \, \text{J}[/tex]
C. [tex]162 \, \text{J}[/tex]
D. [tex]243 \, \text{J}[/tex]



Answer :

To determine Kyle's kinetic energy, we will use the formula for kinetic energy, which is:

[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]

Here's a step-by-step solution:

1. Identify the given values:
- Mass ([tex]\( m \)[/tex]) of Kyle is [tex]\( 54 \, \text{kg} \)[/tex].
- Velocity ([tex]\( v \)[/tex]) of Kyle is [tex]\( 3 \, \text{m/s} \)[/tex].

2. Substitute the values into the kinetic energy formula:
[tex]\[ KE = \frac{1}{2} \times 54 \, \text{kg} \times (3 \, \text{m/s})^2 \][/tex]

3. Calculate the square of the velocity:
[tex]\[ (3 \, \text{m/s})^2 = 9 \, \text{m}^2/\text{s}^2 \][/tex]

4. Multiply the mass by the squared velocity:
[tex]\[ 54 \, \text{kg} \times 9 \, \text{m}^2/\text{s}^2 = 486 \, \text{kg} \cdot \text{m}^2/\text{s}^2 \][/tex]

5. Multiply by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 486 \, \text{kg} \cdot \text{m}^2/\text{s}^2 = 243 \, \text{J} \][/tex]

Therefore, Kyle's kinetic energy is [tex]\( 243 \, \text{J} \)[/tex].

The correct answer is [tex]\(\boxed{243 \, \text{J}}\)[/tex].