To determine Kyle's kinetic energy, we will use the formula for kinetic energy, which is:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
Here's a step-by-step solution:
1. Identify the given values:
- Mass ([tex]\( m \)[/tex]) of Kyle is [tex]\( 54 \, \text{kg} \)[/tex].
- Velocity ([tex]\( v \)[/tex]) of Kyle is [tex]\( 3 \, \text{m/s} \)[/tex].
2. Substitute the values into the kinetic energy formula:
[tex]\[
KE = \frac{1}{2} \times 54 \, \text{kg} \times (3 \, \text{m/s})^2
\][/tex]
3. Calculate the square of the velocity:
[tex]\[
(3 \, \text{m/s})^2 = 9 \, \text{m}^2/\text{s}^2
\][/tex]
4. Multiply the mass by the squared velocity:
[tex]\[
54 \, \text{kg} \times 9 \, \text{m}^2/\text{s}^2 = 486 \, \text{kg} \cdot \text{m}^2/\text{s}^2
\][/tex]
5. Multiply by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[
KE = \frac{1}{2} \times 486 \, \text{kg} \cdot \text{m}^2/\text{s}^2 = 243 \, \text{J}
\][/tex]
Therefore, Kyle's kinetic energy is [tex]\( 243 \, \text{J} \)[/tex].
The correct answer is [tex]\(\boxed{243 \, \text{J}}\)[/tex].