Answered

What is the potential energy of a [tex]$25 \, \text{kg}$[/tex] bicycle resting at the top of a hill [tex]$3 \, \text{m}$[/tex] high?

(Formula: [tex]PE = mgh[/tex])

A. [tex]75 \, \text{J}[/tex]

B. [tex]735 \, \text{J}[/tex]

C. [tex]245 \, \text{J}[/tex]

D. [tex]37.8 \, \text{J}[/tex]



Answer :

To determine the potential energy of a [tex]\(25\text{ kg}\)[/tex] bicycle resting at the top of a [tex]\(3\text{ m}\)[/tex] high hill, we use the formula for gravitational potential energy:

[tex]\[ PE = mgh \][/tex]

Where:
- [tex]\(m\)[/tex] is the mass of the object,
- [tex]\(g\)[/tex] is the acceleration due to gravity,
- [tex]\(h\)[/tex] is the height above the ground.

Given data:
- Mass, [tex]\(m = 25\text{ kg}\)[/tex],
- Acceleration due to gravity, [tex]\(g = 9.81\text{ m/s}^2\)[/tex],
- Height, [tex]\(h = 3\text{ m}\)[/tex].

Step-by-step solution:

1. Identify the mass: [tex]\(m = 25\text{ kg}\)[/tex].
2. Identify the height: [tex]\(h = 3\text{ m}\)[/tex].
3. Use the standard value for acceleration due to gravity: [tex]\(g = 9.81\text{ m/s}^2\)[/tex].
4. Plug these values into the potential energy formula:

[tex]\[ PE = m \times g \times h \][/tex]

So, substituting the given values:

[tex]\[ PE = 25\, \text{kg} \times 9.81\, \text{m/s}^2 \times 3\, \text{m} \][/tex]

[tex]\[ PE = 735.75\, \text{J} \][/tex]

Therefore, the potential energy of the bicycle is [tex]\(735.75 \text{ J}\)[/tex]. Considering the given choices:
- 75 J,
- 735 J,
- 245 J,
- 37.8 J,

The closest answer is [tex]\(735 \text{ J}\)[/tex].

So, the correct answer is:
[tex]\[ 735 \text{ J} \][/tex]