If [tex]g(x)=\{(4,-5),(-3,2),(-6,1),(1,0)\}[/tex], which set of ordered pairs represents the inverse of [tex]g(x)[/tex]?

A. [tex]\{(5,-4),(-2,3),(-1,6),(0,-1)\}[/tex]
B. [tex]\{(-4,5),(3,-2),(6,-1),(-1,0)\}[/tex]
C. [tex]\{(-5,4),(2,-3),(1,-6),(0,1)\}[/tex]
D. [tex]\{(4,-5),(-3,2),(-6,1),(1,0)\}[/tex]



Answer :

To find the inverse of a function [tex]\( g(x) \)[/tex], we need to swap the elements in each ordered pair [tex]\((a, b)\)[/tex] to [tex]\((b, a)\)[/tex].

Given the function [tex]\( g(x) = \{ (4, -5), (-3, 2), (-6, 1), (1, 0) \} \)[/tex], we will find its inverse [tex]\( g^{-1}(x) \)[/tex] by swapping the coordinates of each pair.

Let's swap the coordinates for each pair:

1. For the pair [tex]\((4, -5)\)[/tex], swapping gives [tex]\((-5, 4)\)[/tex].
2. For the pair [tex]\((-3, 2)\)[/tex], swapping gives [tex]\((2, -3)\)[/tex].
3. For the pair [tex]\((-6, 1)\)[/tex], swapping gives [tex]\((1, -6)\)[/tex].
4. For the pair [tex]\((1, 0)\)[/tex], swapping gives [tex]\((0, 1)\)[/tex].

Thus, the inverse of [tex]\( g(x) \)[/tex] is [tex]\( g^{-1}(x) = \{ (-5, 4), (2, -3), (1, -6), (0, 1) \} \)[/tex].

Now, we compare this with the given choices:

A. [tex]\(\{ (5, -4), (-2, 3), (-1, 6), (0, -1) \}\)[/tex]

B. [tex]\(\{ (-4, 5), (3, -2), (6, -1), (-1, 0) \}\)[/tex]

C. [tex]\(\{ (-5, 4), (2, -3), (1, -6), (0, 1) \}\)[/tex]

D. [tex]\(\{ (4, -5), (-3, 2), (-6, 1), (1, 0) \}\)[/tex]

We see that the correct set of ordered pairs that represents the inverse of [tex]\( g(x) \)[/tex] is given in choice C.

Therefore, the answer is
[tex]\[ \boxed{C} \][/tex]